

Certified Mail P 974 492 364 **Return Receipt Requested**

HEC'D

NOV 27 2000

RCAP

November 22, 2000

Christine Kump Project Coordinator Hazardous Waste Program Missouri Department of Natural Resources P.O. Box 176 Jefferson City, MO 65102-0176

Dear Ms. Kump:

Enclosed is a Technical Memorandum detailing the October 2000 investigation results at the Modine Manufacturing Company, Camdenton, MO site. This document includes the supporting documentation from the laboratory analyses completed and is the follow up to the faxed material that CH2M Hill has provided you. If you have any questions on this report, please contact me at (262) 636-1649 or at the letterhead address.

Sincerely,

Thomas S. Sanicola Environmental Engineer

Cc: Modine Manufacturing Company - Camdenton

D. Garrett - EPA Region VII

S. Poplawski - Bryan Cave, LLP

D. Price - CH2M Hill

File(2)

RCRA RECORDS CENTER

Modine Manufacturing Company 1500 DeKoven Avenue Racine, Wisconsin 53403

Telephone 262-636-1200 FAX 262-636-1424

160048

Modine Manufacturing - Camdenton October 2000 Investigation Results

PREPARED FOR:

Thomas S. Sanicola

PREPARED BY:

Daniel J. Price

COPIES:

File

DATE:

October 31, 2000

CH2M HILL is submitting this memo to summarize the results of the field work conducted the week of October 2, 2000. The scope of work consisted of two tasks: the collection of soil samples in an attempt to define the lateral extent of contamination surrounding a former boring (B-13 located near the end of the former stormwater drainage line), and collection of quarterly groundwater samples from the on- and off-site monitoring wells.

Boring B-13, advanced during an investigation in 1995, exhibited elevated volatile organic compound (VOC) concentrations in a soil sample collected from directly above bedrock, at a depth of 13 feet below ground surface (bgs). The soil sample exhibited trichloroethylene (TCE) and tetrachloroethylene (PCE) concentrations in excess of the current Missouri Department of Natural Resources (MDNR) Cleanup Levels for Missouri (CALM) Soil Target Concentration (STARC) and Leaching to Groundwater Pathway (C_{LEACH}) level of 204 parts per million (ppm) and 2.18 ppm respectively.

Groundwater samples collected from the on-site and off-site monitoring wells have consistently showed fluctuating concentrations of VOCs over the last eight years. Recent rounds of groundwater sampling, conducted by Sundstrand in June and July of 2000, indicated lead concentrations in groundwater above MDNR CALM Groundwater Target Concentration (GTARC) levels.

Results of Soil Delineation Effort

Four direct push soil probes were advanced during the October 2000 investigation. Three probes were advanced around the original boring B-13, each roughly 15 feet away from the original boring. The fourth probe was advanced in the immediate vicinity of boring B-13. Boring locations and identification are illustrated in the attached Figure and summarized below:

- Boring BH-1A was advanced 15 feet northwest of B-13
- Boring BH-2A was advanced 15 feet east of B-13
- Boring BH-3A was advanced 15 feet south of B-13
- Boring BH-4A, the off-set boring, was advanced 1 foot southeast of B-13

The location of B-13 was never surveyed as part of the original investigation. Therefore, the off-set distances referenced above should be viewed as approximate. All four borings

STL/MODINE TECH MEMO.DOC 1

encountered refusal (bedrock) at depths ranging from 11 feet bgs to 13 feet bgs. Boring logs are presented in Attachment 1.

Soil samples were continuously collected and screened using a photoionization detector (PID). The sample exhibiting the highest measured concentration of VOCs was selected for submittal to the off-site laboratory. Samples were submitted to the laboratory from depths of 11 feet bgs in borings BH-1A and BH-2A, 10 feet bgs in boring BH-3A, and 6 feet bgs in boring BH-4A.

Constituents exceeding the STARC C_{LEACH} levels are presented by boring below. Concentrations are presented in ppm.

TABLE 1
Soil Compounds Exceeding STARC CLEACH Levels
Modine Manufacturing, Camdenton, MO

Boring Location	Compound Name	Concentration (ppm)
BH-1A	1,1-DCE	2
	cis-1,2-DCE	30
	MC	0.023
	TCE	220
	1,1,2-TCA	0.056
	PCE	1.2
	VC	1.8
BH-2A	cis-1,2-DCE	7.8
	TCE	0.083
	VC	1.1
BH-3A	cis-1,2-DCE	3.2
	VC	1.1
BH-4A	cis-1,2-DCE	20
	TCE	20
	1,1,2-TCA	0.099
	VC	0.9

1,1-DCE = 1,1dichloroethylene

cis-1,2-DCE = cis-1,2-dichloroethene

MC = methylene chloride

TCE = trichloroethylene

PCE = tetrachloroethylene

VC = vinyl chloride

1,1,2-TCA = 1,1,2-trichloroethane

It should be noted that all of the VC concentrations are estimated values. The linear range of the calibration curve was exceeded. The cis-1,2 DCE concentration reported for the sample from boring BH-3A is also an estimated value. Methylene chloride was detected in the method blank at about the STARC concentration. Therefore, the MC exceedance should not be considered indicative of what is in the sample, but rather should be attributed to a laboratory artifact .

A table summarizing the soil analytical results reported at concentration in excess of the laboratory reporting limits is attached as Table 1. The actual laboratory analytical data sheets are attached in Attachment 2.

Groundwater Sampling Results

Groundwater samples were collected from the four on-site wells (MW-1 through MW-4) and the off-site well (MW-5). All of the wells were purged on October 4, 2000, and groundwater samples were collected on October 5, 2000, except for well MW-3 which was sampled on October 4, 2000. Samples were collected for VOC analyses and field-filtered for dissolved metals analyses.

A table summarizing the groundwater analytical results reported at concentration in excess of the laboratory reporting limits is attached as Table 2. The actual laboratory analytical data sheets are attached in Attachment 2.

Constituents concentrations were compared with GTARCs. TCE was the only VOC present in excess of GTARC screening levels. TCE concentrations of 140 parts per billion (ppb) and 150 ppb were reported in the sample and duplicate sample from monitoring well MW-4, the on-site well downgradient of the former lagoon. A TCE concentration of 290 ppb was reported in the off-site monitoring well MW-5.

It should be noted that cis-1,2 DCE was also present below GTARCs but above reporting levels in monitoring well MW-5, the off-site well near the former city-owned lagoon.

None of the wells sampled exhibited dissolved metals concentrations in excess of GTARC screening levels.

Conclusions

The following conclusions can be drawn from the results of the October 2000 investigation at the Camdenton Manufacturing Facility.

Soil

The effort to define the lateral extent of VOC-impacted soil in the area of former boring B-13, located near the discharge end of the former stormwater sewer line, was not successful. The effort did confirm the presence of chlorinated hydrocarbons in the general area. In a previous investigation conducted in 1995, the same constituents (TCE, PCE and DCE) were identified at similar to somewhat greater concentrations as compared to the October 2000 results. However, a new TCE daughter product constituent, VC, was identified in 2000. Given the relatively elevated VC concentration, it appears unlikely that the new "Encore" sampling methodology, which allows for less disturbance of a soil sample, is the sole reason for the detection of VC. Rather it appears that degradation of PCE and TCE is occurring.

The presence of increased levels of DCE, particularly cis-1,2 DCE, is also indicative of a typical TCE degradation pathway. Literature indicates that cis-1,2 DCE is generated at approximately 30 times the concentration of trans-1,2 DCE.

Therefore, it appears that significant biodegradation has occurred since the 1995 investigation. This could work to Modine's advantage following successful delineation and excavation of the most-highly impacted soil. We may be able to make the argument that sufficient biological activity is taking place in the subsurface to adequately remediate small residual pockets of VOC impacts in soil.

Groundwater

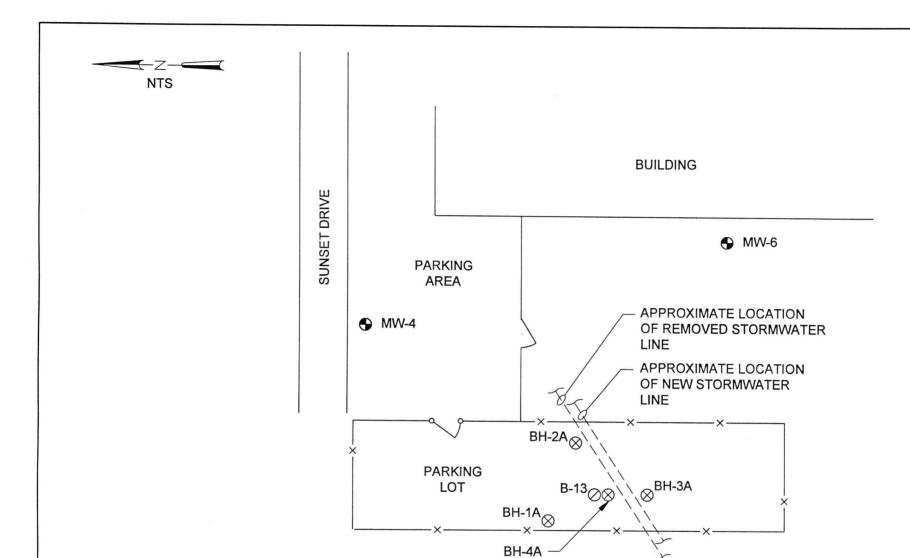
Previous rounds of groundwater sampling, conducted by Sundstrand in June and July of 2000, indicate lead concentrations in groundwater in excess of GTARC levels. These samples were split by Modine and were not filtered in the field. Filtered samples collected during the 2000 investigation indicate that the dissolved lead portion is below detectable levels. This suggests that the lead levels previously obtained were due to suspended materials in the groundwater samples. This assertion would not support MDNR's theory that the lead impact in the wells is related to lead-impacted soil associated with the former mudpits. Groundwater samples collected in 2000 did not appear to be highly turbid.

It should be noted that the groundwater purged and sampled from the off-site monitoring well MW-5 appeared light green. This discoloration is likely due to the past use of this well as an injection point for the flourescene dye tracing that was conducted last fall.

VOC concentrations in the groundwater samples remained similar to those obtained during the sampling efforts conducted earlier this year. Both the TCE and cis-1,2 DCE concentrations in samples from MW-5 remained nearly the same as those from the July sampling event, dropping slightly from the June sampling event. The reported TCE concentrations in the sample and duplicate from MW-4 increased, but the cis-1,2 DCE detected in June and July was not present in October. The low concentrations of TCE reported in monitoring wells MW-1 and MW-2 in June were also not present in the October sample. These results would suggest that the differences in VOC concentrations are due to natural seasonal fluctuations.

Recommendations

The location of the newly installed borings should be surveyed for precise horizontal and vertical location. Horizontal placement will allow us to relocate these locations when new work is implemented. Vertical elevation will allow these points to be used in mapping of the bedrock surface and, more importantly, to accurately assess the required soil volume for removal, if the impact actually extends down the slope to the west.


An additional follow-up investigation should be implemented to complete delineation activities. The number of borings required for delineation will be determined based on field measurements; however, a minimum of five borings is recommended. The proposed location of these five borings are as follows:

- North of BH-1A,
- Northeast of BH-2A,

- East of BH-3A,
- Southwest of BH-3A, and
- At the base of the slope directly west of BH-4A

Groundwater sampling of the on-site wells should continue on a quarterly basis. It may not be necessary for Modine to incur monitoring costs, if the on-site wells become a part of the wider monitoring network implemented by Sundstrand as part of the CERCLA lagoon investigation.

MW-1

- S EXISTING MONITORING WELL (MW-4)
- ⊗ SOIL BORING 2000
- SOIL BORING 1995

SOIL BORING AND MONITORING
WELL LOCATIONS
MODINE MANUFACTURING COMPANY
CAMENTON, MISSOURI

MODINE MANUFACTURING COMPANY Soil Sampling Results CH2M Hill - October 3, 2000

	BH-1A (11)	BH-2A (11)	BH-3A (10)	BH-4A (6)	CALM Screening	Ŭ
Constituents					Levels ^A	Levels ^B
VOCs						
Xylenes	0.01	ND	0.006	0.006	55	10
Vinyl Chloride	1.8	1.1	1.13	0.9	0.016	0.0007
1,1-Dichloroethene	0.2	0.013	ND	ND	0.1	0.003
Acetone	0.15	0.024	0.052	0.27	14	8.0
Methylene Chloride	0.023	0.015	0.016	0.03	0.021	0.001
trans-1,2-Dichloroethene	0.085	0.026	0.006	0.018	1.13	0.03
cis-1,2-Dichloroethene	30	7.8	3.2	20:	0.51	0.02
Trichloroethene	220	0.083	0.006	20	0.097	0.003
Toluen e	0.027	0.005	0.01	0.013	5.13	0.6
1,1,2-Trichloroethane	0.056	ND	ND	0.099	0.049	0.0009
Tetrachloroethene	1.2	ND	ND	0.093	0.42	0.003
4-Methyl-2-pentanone	ND	ND	ND	0.027	NA	NA

Notes:

Units in parts per million (ppm)

ND - Not Detected

NA - Not Available

Cleanup Levels^A - MDNR CALM, September 1998, Soil Target Concentration (STARC)

Cleanup Levels^B - Region 6-Human Health Medium-Specific Screening Levels,

Soil Screening Level Transfers from Soil to Groundwater

MODINE MANUFACTURING COMPANY Groundwater Sampling Results CH2M Hill - October 4-5, 2000

Parameters	MW-1	MW-2	MW-3	MW-4	MW-5	MW-4 (Dup)	Region 6 Screening Levels ^A
VOCs							
cis-1,2-Dichloroethene	ND	ND	ND	ND	14	ND	70
Trichloroethene	ND	ND	ND	140	290	150	5
RCRA Metals							
Barium	58	92	64	71	48	70	2000
Mercury	0.5	ND	ND	ND	ND	ND	2

Notes:

Units in parts per billion (ppb)

ND - Not Detected

NA - Not Available

Cleanup Levels^A - Region 6-Human Health Medium-Specific Screening Levels, Maximum Cleanup Level (MCL)

Attachment 1
Boring Logs

PROJECT NUMBER 161004.CA.01 BORING NUMBER

BH-1A

SHEET 1 OF 1

SOIL BORING LOG

PROJE	CT: Mo	odine Mar	nufacturing		LOCATION : C	amd	enton, MO	179 Sunset Dri	ve	
	TION:				DRILLING CONTRACTOR: GEOTECHNOL	OGY	′			
				NT USED: DP1			DATE:			
	_		@ 13:35	START	: 10/03/2000 0808 END: 0905		LOGGER:	T. SWOVELAN	ND CHAPMA	N
DEPTH		SURFACE	(FT)	STANDARD	SOIL DESCRIPTION			COMMENTS		
	INTERVA			PENETRATION						
		RECOVE		TEST	SOIL NAME, USCS GROUP SYMBOL, COLOR,			CASING, DRILL		
			#/TYPE	RESULTS	MOISTURE CONTENT, RELATIVE DENSITY,			FLUID LOSS, TE	-	
1				6"-6"-6"	OR CONSISTENCY, SOIL STRUCTURE,			RUMENTATION	41 /	
		-		(N)	MINERALOGY. GRAVEL AND ASPHALT, FILL, WHITE (1')		PID (ppm):	Breathing Zone	Head Space	e
_					GRAVEL AND AGENALI, FILL, WHITE (1)					
					CLAY, CH, YELLOWISH RED, MOIST, MEDIUM			1.8	2.7	
-	1-4	0.11			STIFF WITH FINE GRAVEL (CHERT) AND SAND	-				_
l –			1			_				
-						-				-
5_								1.4	110.0	
	4-8	1								
-	4-0	'				-				-
_						_				_
-						-				-
_						_				
10	8-12	20	BH-1A (11)		CDADES TO VELLOWISH AND BROWN					
10 -	0-12	2.8	DH-1A (11)		GRADES TO YELLOWISH AND BROWN MOTTLED	-		1.6	858.0	_
_					GRADES TO OLIVE GRAY					
1 1										
-						-		1.8	16.5	-
-	12-13	1			INCREASED SAND AND CHERT			1.0	10.0	_
					REFUSAL @ 13.0' BGS					
						-				-
15										
						- 1				
						-				-
-						-1				_
						- 1				
										-
-						-				_
20						- 1				
										_
-						-				_
			1			- 1				
	1			1		-				-
-	I			1		-				_
	1			ı		- 1				
_				1		-				-
25 _			l	1		\perp				
	.			- 1		- 1				
-	- 1			ı		-				-
_						_				_
				l						
-		l				-				-

PROJECT NUMBER

BORING NUMBER

161004.CA.01

BH-2A

SHEET 1 OF 1

SOIL BORING LOG

LOCATION: Camdenton, MO 179 Sunset Drive PROJECT: Modine Manufacturing DRILLING CONTRACTOR: GEOTECHNOLOGY **ELEVATION:** DRILLING METHOD AND EQUIPMENT USED: DPT WITH CME 75 START: 10/03/2000 10:15 END: 10:28 LOGGER: T. SWOVELAND CHAPMAN WATER LEVELS: DRY @ 13:36 STANDARD SOIL DESCRIPTION COMMENTS DEPTH BELOW SURFACE (FT) PENETRATION INTERVAL (FT) DEPTH OF CASING, DRILLING RATE, RECOVERY (IN) TEST SOIL NAME, USCS GROUP SYMBOL, COLOR, RESULTS DRILLING FLUID LOSS, TESTS, #/TYPE MOISTURE CONTENT, RELATIVE DENSITY, AND INSTRUMENTATION PID (ppm). 6"-6"-6"-6" OR CONSISTENCY, SOIL STRUCTURE, PID (ppm): MINERALOGY. Breathing Zone Head Space (N) 0.8 GRAVEL AND ASPHALT, FILL (1') 1.0 CLAY, CH, DARK BROWN, MOIST, HARD WITH FINE GRAVEL AND SAND 1-4 2 GRADES TO YELLOWISH RED, STIFF GRADES TO BROWN AND YELLOWISH RED MOTTLED DUE TO IRON STAINING 0.7 4.5 5 4-8 2 10 8-12 2 BH-2A(11) GRADES TO OLIVE GRAY 0.7 34.6 CHERT, WHITE, DRY WITH SAND REFUSAL @ 12.0' BGS. 15 20 25

PROJECT NUMBER BORING NUMBER
161004.CA.01 BH-3A

SHEET 1 OF 1

SOIL BORING LOG

PROJECT: Modine Manufacturing LOCATION: Camdenton, MO 179 Sunset Drive DRILLING CONTRACTOR: GEOTECHNOLOGY **ELEVATION:** DRILLING METHOD AND EQUIPMENT USED: DPT WITH CME 75 WATER LEVELS: DRY @ 13:37 START: 10/03/2000 10:49 END: 11:01 LOGGER: T. SWOVELAND CHAPMAN DEPTH BELOW SURFACE (FT) STANDARD SOIL DESCRIPTION COMMENTS INTERVAL (FT) PENETRATION RECOVERY (IN) SOIL NAME, USCS GROUP SYMBOL, COLOR, DEPTH OF CASING, DRILLING RATE, TEST #/TYPE MOISTURE CONTENT, RELATIVE DENSITY, DRILLING FLUID LOSS, TESTS. **RESULTS** 6"-6"-6"-6" OR CONSISTENCY, SOIL STRUCTURE, AND INSTRUMENTATION PID (ppm). MINERALOGY. PID (ppm): Breathing Zone Head Space (N) GRAVEL AND ASPHALT, FILL (1') 0.9 0.8 CLAY, CH, YELLOWISH RED, MOIST, HARD WITH FINE GRAVEL AND SAND 1-4 0.8 GRADES TO OLIVE GRAY, MEDIUM STIFF. GRADES TO BROWN AND YELOWISH RED 0.4 0.6 5 MOTTLED DUE TO IRON STAINING 4-8 2 GRADES TO OLIVE GRAY STIFF BH-3A(10) GRADES WITH BLACK ASH PIECES 10 8-11 0.8 37.3 CHERT, WHITE, DRY WITH SAND REFUSAL @ 11.0' BGS. 15 20 25

PROJECT NUMBER

BORING NUMBER

161004.CA.01

BH-4A

SHEET 1 OF 1

SOIL BORING LOG

PROJECT : Modine Manufacturing	
DATE:	
WATER LEVELS : DRY @ 13:37 START : 10/03/2000 11:15 END : 11:30 LOGGER : T. SWOVELAND CHAPM.	
DEPTH BELOW SURFACE (FT)	
NTERVAL (FT)	4Ν
RECOVERY (IN)	
#TYPE RESULTS MOISTURE CONTENT, RELATIVE DENSITY, OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY. OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY. DRILLING FLUID LOSS, TESTS, AND INSTRUMENTATION PID (ppm). Dreating Zone Head Sp.	
6*-6*-6* OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY. (N) GRAVEL AND ASPHALT, FILL (1') PID (ppm): Breathing Zone Head Structure, MINERALOGY. (R) GRAVEL AND ASPHALT, FILL (1') 0.7 11.8 CLAY, CH, YELLOWISH RED, MOIST, HARD WITH FINE GRAVEL (CHERT) AND SAND GRADES TO OLIVE GRAY, MEDIUM STIFF. GRADES TO OLIVE GRAY AND YELLOWISH RED DUE TO IRON STAINING — CHERT AND SAND LAYER (.5') HARD — GRADES TO YELLOWISH RED — GRADES TO YELLOWISH RED — TO — REFUSAL © 11.0' BGS.	
(N) MINERALOGY. PID (ppm): Breathing Zone Head Sp GRAVEL AND ASPHALT, FILL (1") 0.7 11.8 0.7	
GRAVEL AND ASPHALT, FILL (1") - 1-4	
CLAY, CH, YELLOWISH RED, MOIST, HARD WITH FINE GRAVEL (CHERT) AND SAND GRADES TO OLIVE GRAY, MEDIUM STIFF. GRADES TO OLIVE GRAY AND YELLOWISH RED DUE TO IRON STAINING CHERT AND SAND LAYER (.5') HARD GRADES TO YELLOWISH RED GRADES TO YELLOWISH RED TO WITH FINE GRAY AND YELLOWISH RED GRADES TO OLIVE GRAY AND YELLOWISH RED TO HERT AND SAND LAYER (.5') HARD GRADES TO YELLOWISH RED TO HERT AND SAND LAYER (.5') HARD GRADES TO YELLOWISH RED TO HERT AND SAND LAYER (.5') HARD GRADES TO YELLOWISH RED TO HERT AND SAND LAYER (.5') HARD GRADES TO YELLOWISH RED TO HERT AND SAND LAYER (.5') HARD GRADES TO YELLOWISH RED TO HERT AND SAND LAYER (.5') HARD GRADES TO YELLOWISH RED TO HERT AND SAND LAYER (.5') HARD GRADES TO YELLOWISH RED TO HERT AND SAND LAYER (.5') HARD TO	ce
- 1-4 1.5 WITH FINE GRAVEL (CHERT) AND SAND GRADES TO OLIVE GRAY, MEDIUM STIFF. -	
GRADES TO OLIVE GRAY, MEDIUM STIFF. GRADES TO OLIVE GRAY AND YELLOWISH RED DUE TO IRON STAINING CHERT AND SAND LAYER (.5') HARD GRADES TO YELLOWISH RED GRADES TO YELLOWISH RED REFUSAL @ 11.0' BGS.	_
GRADES TO OLIVE GRAY AND YELLOWISH RED DUE TO IRON STAINING — CHERT AND SAND LAYER (.5') HARD — GRADES TO YELLOWISH RED — 10 — 8-11 1.5 — REFUSAL @ 11.0' BGS.	_
5 4-8 2 BH-4A(6) CHERT AND SAND LAYER (.5') HARD GRADES TO YELLOWISH RED 10 8-11 1.5	
5 4-8 2 BH-4A(6) CHERT AND SAND LAYER (.5') HARD GRADES TO YELLOWISH RED 10 8-11 1.5	-
5 4-8 2 BH-4A(6) CHERT AND SAND LAYER (.5') HARD GRADES TO YELLOWISH RED 10 8-11 1.5	_
_ 4-8 2 BH-4A(6) CHERT AND SAND LAYER (.5') HARD _ GRADES TO YELLOWISH RED _ 1.2 94.6	
GRADES TO YELLOWISH RED _ 1.2 94.6	
-	_
-	
REFUSAL @ 11.0' BGS.	-
REFUSAL @ 11.0' BGS.	_
REFUSAL @ 11.0' BGS.	
REFUSAL @ 11.0' BGS.	-
REFUSAL @ 11.0' BGS.	
	_
- - - 15	
	_
15	_
15	
	-
	_
1 1	
1 -	-
	_
I -	-
1 7 1 1 1 1	
20 _	_
- -	_
	_
] - -	-
_	-
l.,	
	_
-	-
- -	-
-	-

Attachment 2 Laboratory Analytical Data Sheets

AMERICAN TECHNICAL & ANALYTICAL SERVICES, INC.

875 Fee Fee Road • Maryland Heights, MO 63043 • (314) 434-4570 • FAX (314) 434-0080

October 19, 2000

Chris English CH2M Hill 727 North First Street, Ste 400 St. Louis, MO 63102

CASE NARRATIVE

PROJECT: #161004.CA.01 - Modine Mfg.

RECEIVED: October 5, 2000

ATAS ID	CLIENT ID	MATRIX
30986.01 30986.02 30986.03 30986.04 30986.05 30986.06 30986.07 30986.08 30986.09 30986.10	BH-1A(11) BH-2A(11) BH-3A(10) BH-4A(6) MW-1 MW-2 MW-3 MW-5 MW-4 MW-4A EB-1	Soil Soil Soil Water Water Water Water Water Water

I certify that the procedures used for testing are in compliance with the terms and conditions of the methods, both technically and for completeness, for other than any conditions detailed below. In addition, I certify that to the best of my knowledge and belief, the data as reported are true and accurate.

Samples BH-1A(11), BH-2A(11), and BH-4A(6) are reported with an E flag (estimated value) for Vinyl Chloride. Sample BH-3A(10) is reported with an E flag (estimated value) for Vinyl Chloride and cis-1,2-Dichloroethene. Due to the non-homogeneous matrix, attempts to use a smaller sample aliquot from the jar provided did not reflect the amount of Vinyl Chloride and cis-1,2-Dichloroethene shown in the low-level pre-preserved container.

Release of the data contained in this report has been authorized by the Laboratory Manager and Project Manager, as verified by the following signature.

Thank you for choosing ATAS for your analytical needs.

Jeffrey A. Carr

rey a. lavor bran

Project Manager

JAC/jp

Enclosures

ATAS

"Professional Commitment"

VOLATILES ANAI	LYSIS	
Purge / Trap	SW-5030	X
	SW-5035	X
SEMI-VOLATILE AN	ALYSIS	
Soxhlet Extraction	SW-3540C	
Sonication Extraction	SW-3550B	
GPC Clean-Up	SW-3640A	
Separatory Funnel Extraction	SW-3510C	
Continuous Extractors	SW-3520C	
H ₂ SO ₄ Clean-Up	SW-3665A	
PESTICIDE / PC		
Soxhlet Extraction	SW-3540C	
Sonication Extraction	SW-3550B	
GPC Clean-Up	SW-3640A	
Florisil Clean-Up	SW-3620B	
Silica Gel Clean-Up	SW-3630C	
H ₂ SO ₄ Clean-Up	SW-3665A	
Separatory Funnel Extraction	SW-3510C	
Continuous Extractors	SW-3520C	
METALS ANALY	'SIS	
Sample Digestion	SW-3050B	
1 5	SW-3005A	X
1	SW-3010A	
HERBICIDES, PAH's BY HPLC AND NI	TROAROMATICS BY	GC
Soxhlet Extraction	SW-3540C	
Sonication Extraction	SW-3550B	
Separatory Funnel Extraction	SW-3510C	
. TOXICITY CHARACTERISTIC LEA	ACHING PROCEDURE	E
TCLP Extraction	SW-1311	

An entry (check or X) in the box to the right of a method reference indicates that this method was followed, in addition to the methods referenced on the results pages, in the analysis of samples described in this report.

A TAS 875 Fee Fee Road • Maryland Heights, MO 63043 • (314) 434-4570 - FAX (314) 434-0080

CH2M HILL CLIENT:

REPORT: 3098601VO(738)

DATE: 10-19-00

727 NORTH FIRST STREET, STE 400

ST. LOUIS, MO 63102

ATTN: CHRIS ENGLISH

SAMPLE MATRIX : SOIL ATAS # : 30986.01B

METHOD REF.: SW846-8260B, EPA METHODOLOGY

PROJECT # : 161004.CA.01 - MODINE MFG.

SAMPLE ID : BH-1A(11) DATE SUBMITTED: 10-05-00

DATE ANALYZED: 10-08-00

RESULTS REPORTED IN ug/Kg OR Parts Per Billion (PPB)

VOLATILES	R.L.	RESULTS	A	VOLATILES	R.L.	RESULTS
XYLENE (TOTAL)	5	10		TOLUENE	5	27
DICHLORODIFLUOROMETHANE	10	ND		trans-1,3-DICHLOROPROPENE	5	ND
CHLOROMETHANE	10	ND		1,1,2-TRICHLOROETHANE	5	56
VINYL CHLORIDE	10	1800	E	TETRACHLOROETHENE	500	1200
BROMOMETHANE	10	ND		1,3-DICHLOROPROPANE	. 5	ND
CHLOROETHANE	10	ND		2-HEXANONE	10	ND
TRICHLOROFLUOROMETHANE	10	ND		DIBROMOCHLOROMETHANE	5	ND
1,1-DICHLOROETHENE	5	200		1,2-DIBROMOETHANE	5	ND
ACETONE	10	150		CHLOROBENZENE	5	ND
IODOMETHANE	10	ND		1,1,1,2-TETRACHLOROETHANE	5	ND
CARBON DISULFIDE	5	ND		ETHYLBENZENE	5	ND
METHYLENE CHLORIDE	5	23	В	STYRENE	5	ND
trans-1,2-DICHLOROETHENE	5	85		BROMOFORM	5	ND
METHYL TERT-BUTYL ETHER	10	ND		ISOPROPYLBENZENE	5	ND
1,1-DICHLOROETHANE	5	ND		1,1,2,2-TETRACHLOROETHANE	5	ND
VINYL ACETATE	10	ND		BROMOBENZENE	5	ND
2,2-DICHLOROPROPANE	5	ND		1,2,3-TRICHLOROPROPANE	5	ND
cis-1,2-DICHLOROETHENE	5000	30000		n-PROPYLBENZENE	5	ND
2-BUTANONE	10	ND		2-CHLOROTOLUENE	5	ND
BROMOCHLOROMETHANE	5	ND		1,3,5-TRIMETHYLBENZENE	5	ND
CHLOROFORM	5	ND		4-CHLOROTOLUENE	5	ND
1,1,1-TRICHLOROETHANE	5	ND		TERT-BUTYLBENZENE	5	ND
CARBON TETRACHLORIDE	5	ND		1,2,4-TRIMETHYLBENZENE	- 5	ND
1,1-DICHLOROPROPENE	5	ND		sec-BUTYLBENZENE	5	ND
BENZENE	5	ND		1,3-DICHLOROBENZENE	5	ND
1,2-DICHLOROETHANE	5	ND		p-ISOPROPYLTOLUENE	5	ND
TRICHLOROETHENE	5000	220000		1,4-DICHLOROBENZENE	5	ND
1,2-DICHLOROPROPANE	5	ND		n-BUTYLBENZENE	5	ND
DIBROMOMETHANE	5	ND		1,2-DICHLOROBENZENE	5	ND
BROMODICHLOROMETHANE	5	ND		1,2-DIBROMO-3-CHLOROPROPANE		ND
cis-1,3-DICHLOROPROPENE	5	ND		1,2,4-TRICHLOROBENZENE	5	ND
4-METHYL-2-PENTANONE	10	ND		HEXACHLOROBUTADIENE	5	ND
1,2,3-TRICHLOROBENZENE	5	ND		NAPHTHALENE	5	ND

QA/QC SURROGATE RECOVERIES

TOLUENE-d8(81-117) 84% BROMOFLUOROBENZENE(74-121) 99% 1,2-DICHLOROETHANE-D4(70-121) 116%

B = ANALYTE DETECTED IN METHOD BLANK, POSSIBLY BELOW THE REPORTING LIMIT.

E = ESTIMATED VALUE; EXCEEDS LINEAR RANGE

ND = NOT DETECTED ABOVE REPORTING LIMIT

RL = REPORTING LIMIT; DEFINED AS THE PRACTICAL QUANTITATION LIMIT PLUS ANY DILUTION, POSITIVE VALUES BELOW THIS LIMIT WERE NOT REPORTED.

4745 875 Fee Fee Road • Maryland Heights, MO 63043 • (314) 434-4570 - FAX (314) 434-0080

CLIENT: CH2M HILL

REPORT: 3098601VO(738)

727 NORTH FIRST STREET, STE 400

ST. LOUIS, MO 63102 ATTN: CHRIS ENGLISH

DATE: 10-19-00

SAMPLE MATRIX : SOIL

ATAS # : 30986.02B

METHOD REF.: SW846-8260B, EPA METHODOLOGY PROJECT #: 161004.CA.01 - MODINE MFG.

DATE SUBMITTED: 10-05-00

SAMPLE ID : BH-2A(11)

DATE ANALYZED: 10-09-00

RESULTS REPORTED IN ug/Kg OR Parts Per Billion (PPB)

VOLATILES	R.L.	RESULTS	VOLATILES	R.L.	RESULTS
YVI ENE (MOTAL)	5	ND	TOLUENE	5	5
XYLENE (TOTAL) DICHLORODIFLUOROMETHANE	10	ND	trans-1,3-DICHLOROPROPENE	5	ND
CHLOROMETHANE	10	ND	1,1,2-TRICHLOROETHANE	5	ND
VINYL CHLORIDE	10	1100 E	TETRACHLOROETHENE	5	ND
BROMOMETHANE	10	ND	1,3-DICHLOROPROPANE	5	ND
CHLOROETHANE	10	ND	2-HEXANONE	10	ND
TRICHLOROFLUOROMETHANE	10	ND	DIBROMOCHLOROMETHANE	5	ND
1.1-DICHLOROETHENE	5	13	1,2-DIBROMOETHANE	5	ND
ACETONE	10	24	CHLOROBENZENE	5	ND
IODOMETHANE	10	ND	1,1,1,2-TETRACHLOROETHANE	5	ND
CARBON DISULFIDE	5	ND	ETHYLBENZENE	5	ND
METHYLENE CHLORIDE	5	15 B	STYRENE	5	ND
trans-1,2-DICHLOROETHENE	5	26	BROMOFORM	5	ND
METHYL TERT-BUTYL ETHER	10	ND	ISOPROPYLBENZENE	5	ND
1,1-DICHLOROETHANE	5	ND	1,1,2,2-TETRACHLOROETHANE	5	ND
VINYL ACETATE	10	ND	BROMOBENZENE	5	ND
2,2-DICHLOROPROPANE	5	ND	1,2,3-TRICHLOROPROPANE	5	ND
cis-1,2-DICHLOROETHENE	500	7800	n-PROPYLBENZENE	5	ND
2-BUTANONE	10	ND	2-CHLOROTOLUENE	5	ND
BROMOCHLOROMETHANE	5	ND	1,3,5-TRIMETHYLBENZENE	5	ND
CHLOROFORM	5	ND	4-CHLOROTOLUENE	5	ND
1,1,1-TRICHLOROETHANE	5	ND	TERT-BUTYLBENZENE	5	ND
CARBON TETRACHLORIDE	5	ND	1,2,4-TRIMETHYLBENZENE	5	ND
1,1-DICHLOROPROPENE	5	ND	sec-BUTYLBENZENE	5	ND
BENZENE	5	ND	1,3-DICHLOROBENZENE	5	ND
1,2-DICHLOROETHANE	5	ND	p-ISOPROPYLTOLUENE	5	ND
TRICHLOROETHENE	5	83	1,4-DICHLOROBENZENE	5	ND
1,2-DICHLOROPROPANE	5	ND	n-BUTYLBENZENE	5	ND
DIBROMOMETHANE	5	ND	1,2-DICHLOROBENZENE	5	ND
BROMODICHLOROMETHANE	5	ND	1,2-DIBROMO-3-CHLOROPROPANE	5	ND
cis-1,3-DICHLOROPROPENE	5	ND	1,2,4-TRICHLOROBENZENE	5	ND
4-METHYL-2-PENTANONE	10	ND	HEXACHLOROBUTADIENE	5	ND
1,2,3-TRICHLOROBENZENE	5	ND	NAPHTHALENE	5	ND

QA/QC SURROGATE RECOVERIES

TOLUENE-d8(81-117) 102% BROMOFLUOROBENZENE(74-121) 114% 1,2-DICHLOROETHANE-D4(70-121) 119%

B = ANALYTE DETECTED IN METHOD BLANK, POSSIBLY BELOW THE REPORTING LIMIT.

E = ESTIMATED VALUE; EXCEEDS LINEAR RANGE

ND = NOT DETECTED ABOVE REPORTING LIMIT

RL = REPORTING LIMIT; DEFINED AS THE PRACTICAL QUANTITATION LIMIT PLUS ANY DILUTION, POSITIVE VALUES BELOW THIS LIMIT WERE NOT REPORTED.

A TAS 875 Fee Fee Road • Maryland Heights, MO 63043 • (314) 434-4570 - FAX (314) 434-0080

CH2M HILL CLIENT:

REPORT: 3098601VO(738)

727 NORTH FIRST STREET, STE 400

DATE: 10-19-00

ST. LOUIS, MO 63102 ATTN: CHRIS ENGLISH

SAMPLE MATRIX : SOIL

METHOD REF.: SW846-8260B, EPA METHODOLOGY

SAMPLE MATRIX: SOIL
ATAS # : 30986.03B

PROJECT # : 161004.CA.01 - MODINE MFG.

DATE SUBMITTED: 10-05-00

SAMPLE ID : BH-3A(10)

DATE ANALYZED : 10-09-00

RESULTS REPORTED IN ug/Kg OR Parts Per Billion (PPB)

VOLATILES	R.L.	RESULTS	VOLATILES	R.L.	RESULTS
XYLENE (TOTAL)	5	6	TOLUENE	5	10
DICHLORODIFLUOROMETHANE	10	ND	trans-1,3-DICHLOROPROPENE	5	ND
CHLOROMETHANE	10	ND	1,1,2-TRICHLOROETHANE	5	ND
VINYL CHLORIDE	10	1100 E	TETRACHLOROETHENE	5	ND
BROMOMETHANE	10	ND	1,3-DICHLOROPROPANE	5	ND
CHLOROETHANE	10	ND	2-HEXANONE	10	ND
TRICHLOROFLUOROMETHANE	10	ND	DIBROMOCHLOROMETHANE	5	ND
1,1-DICHLOROETHENE	5	ND	1,2-DIBROMOETHANE	5	ND
ACETONE	10	52	CHLOROBENZENE	5	ND
IODOMETHANE	10	ND	1,1,1,2-TETRACHLOROETHANE	5	ND
CARBON DISULFIDE	5	ND	ETHYLBENZENE	5	ND
METHYLENE CHLORIDE	5	16 B	STYRENE	5	ND
trans-1,2-DICHLOROETHENE	5	6	BROMOFORM	5	ND
METHYL TERT-BUTYL ETHER	10	ND	ISOPROPYLBENZENE	5	ND
1.1-DICHLOROETHANE	5	ND	1,1,2,2-TETRACHLOROETHANE	5	ND
VINYL ACETATE	10	ND	BROMOBENZENE	5	ND
2,2-DICHLOROPROPANE	5	ND	1,2,3-TRICHLOROPROPANE	5	ND
cis-1,2-DICHLOROETHENE	5	3200 E	n-PROPYLBENZENE	5	ND
2-BUTANONE	10	ND	2-CHLOROTOLUENE	5	ND
BROMOCHLOROMETHANE	5	ND	1,3,5-TRIMETHYLBENZENE	5	ND
CHLOROFORM	5	ND	4-CHLOROTOLUENE	5	ND
1,1,1-TRICHLOROETHANE	5	ND	TERT-BUTYLBENZENE	5	ND
CARBON TETRACHLORIDE	5 .	ND	1,2,4-TRIMETHYLBENZENE	5	ND
1,1-DICHLOROPROPENE	5	ND	sec-BUTYLBENZENE	5	ND
BENZENE	5	ND	1,3-DICHLOROBENZENE	5	ND
1,2-DICHLOROETHANE	5	ND	p-ISOPROPYLTOLUENE	5	ND
TRICHLOROETHENE	5	6	1,4-DICHLOROBENZENE	5	ND
1,2-DICHLOROPROPANE	5	ND	n-BUTYLBENZENE	5	ND
DIBROMOMETHANE	5	ND	1,2-DICHLOROBENZENE	5	ND
BROMODICHLOROMETHANE	5	ND	1,2-DIBROMO-3-CHLOROPROPANE		ND
cis-1,3-DICHLOROPROPENE	5	ND	1,2,4-TRICHLOROBENZENE	5	ND
4-METHYL-2-PENTANONE	10	ND	HEXACHLOROBUTADIENE	5	ND
1,2,3-TRICHLOROBENZENE	5	ND	NAPHTHALENE	5	ND

QA/QC SURROGATE RECOVERIES

TOLUENE-d8(81-117) 104% BROMOFLUOROBENZENE(74-121) 110% 1,2-DICHLOROETHANE-D4(70-121) 115%

B = ANALYTE DETECTED IN METHOD BLANK, POSSIBLY BELOW THE REPORTING LIMIT.

E = ESTIMATED VALUE; EXCEEDS LINEAR RANGE

ND = NOT DETECTED ABOVE REPORTING LIMIT

RL = REPORTING LIMIT; DEFINED AS THE PRACTICAL QUANTITATION LIMIT PLUS ANY DILUTION, POSITIVE VALUES BELOW THIS LIMIT WERE NOT REPORTED.

ATAS 875 Fee Fee Road • Maryland Heights, MO 63043 • (314) 434-4570 - FAX (314) 434-0080

CHoM HILL CLIENT:

REPORT: 3098601VO(738)

727 NORTH FIRST STREET, STE 400

ST. LOUIS, MO 63102 ATTN: CHRIS ENGLISH

DATE: 10-19-00

METHOD REF.: SW846-8260B, EPA METHODOLOGY PROJECT #: 161004.CA.01 - MODINE MFG.

SAMPLE MATRIX : SOIL
ATAS # : 30986.04B DATE SUBMITTED: 10-05-00

SAMPLE ID : BH-4A(6)

DATE ANALYZED: 10-09-00

RESULTS REPORTED IN ug/Kg OR Parts Per Billion (PPB)

VOLATILES	R.L.	RESULTS	VOLATILES	R.L.	RESULTS
XYLENE (TOTAL)	5	6	TOLUENE	5	13
DICHLORODIFLUOROMETHANE	10	ND	trans-1,3-DICHLOROPROPENE	5	ND
CHLOROMETHANE	10	ND	1,1,2-TRICHLOROETHANE	5	99
VINYL CHLORIDE	10	900 E	TETRACHLOROETHENE	5	93
BROMOMETHANE	10	ND	1,3-DICHLOROPROPANE	5	ND
CHLOROETHANE	10	ND	2-HEXANONE	10	ND
TRICHLOROFLUOROMETHANE	10	ND	DIBROMOCHLOROMETHANE	5	ND
1,1-DICHLOROETHENE	5	ND	1,2-DIBROMOETHANE	5	ND
ACETONE	10	270	CHLOROBENZENE	5	ND
IODOMETHANE	10	ND	1,1,1,2-TETRACHLOROETHANE	5	ND
CARBON DISULFIDE	5	ND	ETHYLBENZENE	5	ND
METHYLENE CHLORIDE	5	30 B	STYRENE	5	ND
trans-1,2-DICHLOROETHENE	5	18	BROMOFORM	5	ND
METHYL TERT-BUTYL ETHER	10	ND	ISOPROPYLBENZENE	5	ND
1.1-DICHLOROETHANE	5	ND	1,1,2,2-TETRACHLOROETHANE	5	ND
VINYL ACETATE	10	ND	BROMOBENZENE	5	ND
2.2-DICHLOROPROPANE	5	ND	1,2,3-TRICHLOROPROPANE	5	ND
cis-1,2-DICHLOROETHENE	500	20000	n-PROPYLBENZENE	5	ND
2-BUTANONE	10	ND	2-CHLOROTOLUENE	5	ND
BROMOCHLOROMETHANE	5	ND	1,3,5-TRIMETHYLBENZENE	5	ND
CHLOROFORM	5	ND	4-CHLOROTOLUENE	5	ND
1,1,1-TRICHLOROETHANE	5	ND	TERT-BUTYLBENZENE	5	ND
CARBON TETRACHLORIDE	5 -	ND	1,2,4-TRIMETHYLBENZENE	5	ND
1,1-DICHLOROPROPENE	5	ND	sec-BUTYLBENZENE	5	ND
BENZENE	5	ND	1,3-DICHLOROBENZENE	5	ND
1,2-DICHLOROETHANE	5	ND	p-ISOPROPYLTOLUENE	5	ND
TRICHLOROETHENE	500	20000	1,4-DICHLOROBENZENE	5	ND
1,2-DICHLOROPROPANE	5	ND	n-BUTYLBENZENE	5	ND
DIBROMOMETHANE	5	ND	1,2-DICHLOROBENZENE	5	ND
BROMODICHLOROMETHANE	5	ND	1,2-DIBROMO-3-CHLOROPROPANE	5	ND
cis-1,3-DICHLOROPROPENE	5	ND	1,2,4-TRICHLOROBENZENE	5	ND
4-METHYL-2-PENTANONE	10	27	HEXACHLOROBUTADIENE	5	ND
1,2,3-TRICHLOROBENZENE	5	ND	NAPHTHALENE	5	ND

QA/QC SURROGATE RECOVERIES

TOLUENE-d8(81-117) 99% BROMOFLUOROBENZENE(74-121) 114% 1,2-DICHLOROETHANE-D4(70-121) 116%

B = ANALYTE DETECTED IN METHOD BLANK, POSSIBLY BELOW THE REPORTING LIMIT.

E = ESTIMATED VALUE; EXCEEDS LINEAR RANGE

ND = NOT DETECTED ABOVE REPORTING LIMIT

RL = REPORTING LIMIT; DEFINED AS THE PRACTICAL QUANTITATION LIMIT PLUS ANY DILUTION, POSITIVE VALUES BELOW THIS LIMIT WERE NOT REPORTED.

REPORT: 3098601VO(738)

LABORATORY RESULTS

*** 875 Fee Fee Road • Maryland Heights, MO 63043 • (314) 434-4570 - FAX (314) 434-0080

CH₂M HILL CLIENT:

727 NORTH FIRST STREET, STE 400

DATE : 10-19-00 ST. LOUIS, MO 63102

ATTN: CHRIS ENGLISH

METHOD REF.: SW846-8260B, EPA METHODOLOGY PROJECT #: 161004.CA.01 - MODINE MFG. SAMPLE ID: MW-1 SAMPLE MATRIX : WATER

ATAS # : 30986.05A DATE SUBMITTED: 10-05-00

DATE ANALYZED: 10-09-00

RESULTS REPORTED IN ug/L OR Parts Per Billion (PPB)

VOLATILES	R.L.	RESULTS	VOLATILES	R.L.	RESULTS
XYLENE (TOTAL)	5	ND	TOLUENE	5	ND
DICHLORODIFLUOROMETHANE	10	ND	trans-1,3-DICHLOROPROPENE	5	ND
CHLOROMETHANE	10	ND	1,1,2-TRICHLOROETHANE	5	ND
VINYL CHLORIDE	10	ND	TETRACHLOROETHENE	5	ND
BROMOMETHANE	10	ND	1,3-DICHLOROPROPANE	5	ND
CHLOROETHANE	10	ND	2-HEXANONE	10	ND
TRICHLOROFLUOROMETHANE	10	ND	DIBROMOCHLOROMETHANE	5	ND
1,1-DICHLOROETHENE	5	ND	1,2-DIBROMOETHANE	5	ND
ACETONE	10	ND	CHLOROBENZENE	5	ND
IODOMETHANE	10	ND	1,1,1,2-TETRACHLOROETHANE	5	ND
CARBON DISULFIDE	5	ND	ETHYLBENZENE	5	ND
METHYLENE CHLORIDE	5	ND	STYRENE	5	ND
trans-1,2-DICHLOROETHENE	5	ND	BROMOFORM	5	ND
METHYL TERT-BUTYL ETHER	10	ND	ISOPROPYLBENZENE	5	ND
1,1-DICHLOROETHANE	5	ND	1,1,2,2-TETRACHLOROETHANE	5	ND
VINYL ACETATE	10	ND	BROMOBENZENE	5	ND
2,2-DICHLOROPROPANE	5	ND	1,2,3-TRICHLOROPROPANE	5	ND
cis-1,2-DICHLOROETHENE	5	ND	n-PROPYLBENZENE	5	ND
2-BUTANONE	10	ND	2-CHLOROTOLUENE	5	ND
BROMOCHLOROMETHANE	5	ND	1,3,5-TRIMETHYLBENZENE	5	ND
CHLOROFORM	5	ND	4-CHLOROTOLUENE	5	ND
1,1,1-TRICHLOROETHANE	5	ND	TERT-BUTYLBENZENE	5	ND
CARBON TETRACHLORIDE	5	ND	1,2,4-TRIMETHYLBENZENE	5	ND
1,1-DICHLOROPROPENE	. 5	ND	sec-BUTYLBENZENE	5	ND
BENZENE	5	ND	1,3-DICHLOROBENZENE	5	ND
1,2-DICHLOROETHANE	5	ND	p-ISOPROPYLTOLUENE	5	ND
TRICHLOROETHENE	5	ND	1,4-DICHLOROBENZENE	5	ND
1,2-DICHLOROPROPANE	5	ND	n-BUTYLBENZENE	5	ND
DIBROMOMETHANE	5	ND	1,2-DICHLOROBENZENE	5	ND
BROMODICHLOROMETHANE	5	ND	1,2-DIBROMO-3-CHLOROPROPANE	5	ND
cis-1,3-DICHLOROPROPENE	5	ND	1,2,4-TRICHLOROBENZENE	5	ND
4-METHYL-2-PENTANONE	10	ND	HEXACHLOROBUTADIENE	5	ND
1,2,3-TRICHLOROBENZENE	5	ND	NAPHTHALENE	5	ND

QA/QC SURROGATE RECOVERIES

TOLUENE-d8(80-116) 102% BROMOFLUOROBENZENE(86-115) 109% 1,2-DICHLOROETHANE-D4(76-114) 103%

B = ANALYTE DETECTED IN METHOD BLANK, POSSIBLY BELOW THE REPORTING LIMIT.

ND = NOT DETECTED ABOVE REPORTING LIMIT

RL = REPORTING LIMIT; DEFINED AS THE PRACTICAL QUANTITATION LIMIT PLUS ANY DILUTION, POSITIVE VALUES BELOW THIS LIMIT WERE NOT REPORTED.

1745 875 Fee Fee Road ● Maryland Heights, MO 63043 ● (314) 434-4570 - FAX (314) 434-0080

REPORT: 3098601VO(738) CHoM HILL CLIENT:

727 NORTH FIRST STREET, STE 400

DATE : 10-19-00 ST. LOUIS, MO 63102

ATTN: CHRIS ENGLISH

SAMPLE MATRIX: WATER METHOD REF.: SW846-8260B, EPA METHODOLOGY
ATAS # : 30986.06A PROJECT # : 161004.CA.01 - MODINE MFG.
DATE SUBMITTED: 10-05-00 SAMPLE ID : MW-2

DATE ANALYZED: 10-09-00

RESULTS REPORTED IN ug/L OR Parts Per Billion (PPB)

VOLATILES	R.L.	RESULTS	VOLATILES	R.L.	RESULTS
XYLENE (TOTAL)	5	ND	TOLUENE	5	ND
DICHLORODIFLUOROMETHANE	10	ND	trans-1,3-DICHLOROPROPENE	5	ND
CHLOROMETHANE	10	ND	1,1,2-TRICHLOROETHANE	5	ND
VINYL CHLORIDE	10	ND	TETRACHLOROETHENE	5	ND
BROMOMETHANE	10	ND	1,3-DICHLOROPROPANE	5	ND
CHLOROETHANE	10	ND	2-HEXANONE	10	ND
TRICHLOROFLUOROMETHANE	10	ND	DIBROMOCHLOROMETHANE	5	ND
1.1-DICHLOROETHENE	5	ND	1,2-DIBROMOETHANE	5	ND
ACETONE	10	ND	CHLOROBENZENE	5	ND
IODOMETHANE	10	ND	1,1,1,2-TETRACHLOROETHANE	5	ND
CARBON DISULFIDE	5	ND	ETHYLBENZENE	5	ND
METHYLENE CHLORIDE	5	ND	STYRENE	5	ND
trans-1,2-DICHLOROETHENE	5	ND	BROMOFORM	5	ND
METHYL TERT-BUTYL ETHER	10	ND	ISOPROPYLBENZENE	5	ND
1,1-DICHLOROETHANE	5	ND	1,1,2,2-TETRACHLOROETHANE	5	ND
VINYL ACETATE	10	ND	BROMOBENZENE	5	ND
2,2-DICHLOROPROPANE	5	ND	1,2,3-TRICHLOROPROPANE	5	ND
cis-1,2-DICHLOROETHENE	5	ND	n-PROPYLBENZENE	5	ND
2-BUTANONE	10	ND	2-CHLOROTOLUENE	5	ND
BROMOCHLOROMETHANE	5	ND	1,3,5-TRIMETHYLBENZENE	5	ND
CHLOROFORM	5	ND	4-CHLOROTOLUENE	5	ND
1,1,1-TRICHLOROETHANE	5	ND	TERT-BUTYLBENZENE	5	ND
CARBON TETRACHLORIDE	5	ND	1,2,4-TRIMETHYLBENZENE	5	ND
1,1-DICHLOROPROPENE	5	ND	sec-BUTYLBENZENE	5	ND
BENZENE	5	ND	1,3-DICHLOROBENZENE	5	ND
1,2-DICHLOROETHANE	5	ND	p-ISOPROPYLTOLUENE	5	ND
TRICHLOROETHENE	5	ND	1,4-DICHLOROBENZENE	5	ND
1,2-DICHLOROPROPANE	5	ND	n-BUTYLBENZENE	5	ND
DIBROMOMETHANE	5	ND	1,2-DICHLOROBENZENE	5	ND
BROMODICHLOROMETHANE	5	ND	1,2-DIBROMO-3-CHLOROPROPANE		ND
cis-1,3-DICHLOROPROPENE	5	ND	1,2,4-TRICHLOROBENZENE	5	ND
4-METHYL-2-PENTANONE	10	ND	HEXACHLOROBUTADIENE	5	ND
1,2,3-TRICHLOROBENZENE	5	ND	NAPHTHALENE	5	ND

QA/QC SURROGATE RECOVERIES

TOLUENE-d8(80-116) 102% BROMOFLUOROBENZENE(86-115) 108% 1,2-DICHLOROETHANE-D4(76-114) 103%

B = ANALYTE DETECTED IN METHOD BLANK, POSSIBLY BELOW THE REPORTING LIMIT.

ND = NOT DETECTED ABOVE REPORTING LIMIT

RL = REPORTING LIMIT; DEFINED AS THE PRACTICAL QUANTITATION LIMIT PLUS ANY DILUTION, POSITIVE VALUES BELOW THIS LIMIT WERE NOT REPORTED.

** 875 Fee Fee Road • Maryland Heights, MO 63043 • (314) 434-4570 - FAX (314) 434-0080

CH2M HILL CLIENT:

REPORT: 3098601VO(738)

727 NORTH FIRST STREET, STE 400

ST. LOUIS, MO 63102

DATE: 10-19-00

ATTN: CHRIS ENGLISH

SAMPLE MATRIX: WATER METHOD REF.: SW846-8260B, EPA METHODOLOGY

ATAS # : 30986.07A PROJECT # : 161004.CA.01 - MODINE MFG.

DATE SUBMITTED: 10-05-00 SAMPLE ID : MW-3

DATE ANALYZED: 10-09-00

RESULTS REPORTED IN ug/L OR Parts Per Billion (PPB)

VOLATILES	R.L.	RESULTS	VOLATILES	R.L.	RESULTS
XYLENE (TOTAL)	5	ND	TOLUENE	5	ND
DICHLORODIFLUOROMETHANE	10	ND	trans-1,3-DICHLOROPROPENE	5	ND
CHLOROMETHANE	10	ND	1,1,2-TRICHLOROETHANE	5	ND
VINYL CHLORIDE	10	ND	TETRACHLOROETHENE	5	ND
BROMOMETHANE	10	ND	1,3-DICHLOROPROPANE	5	ND
CHLOROETHANE	10	ND	2-HEXANONE	10	ND
TRICHLOROFLUOROMETHANE	10	ND	DIBROMOCHLOROMETHANE	5	ND
1,1-DICHLOROETHENE	5	ND	1,2-DIBROMOETHANE	5	ND
ACETONE	10	ND	CHLOROBENZENE	5	ND
IODOMETHANE	10	ND	1,1,1,2-TETRACHLOROETHANE	5	ND
CARBON DISULFIDE	5	ND	ETHYLBENZENE	5	ND
METHYLENE CHLORIDE	5	ND	STYRENE	5	ND
trans-1,2-DICHLOROETHENE	5	ND	BROMOFORM	5	ND
METHYL TERT-BUTYL ETHER	10	ND	ISOPROPYLBENZENE	5	ND
1,1-DICHLOROETHANE	. 5	ND	1,1,2,2-TETRACHLOROETHANE	5	ND
VINYL ACETATE	10	ND	BROMOBENZENE	5	ND
2,2-DICHLOROPROPANE	5	ND	1,2,3-TRICHLOROPROPANE	5	ND
cis-1,2-DICHLOROETHENE	5	ND	n-PROPYLBENZENE	5	ND
2-BUTANONE	10	ND	2-CHLOROTOLUENE	5	ND
BROMOCHLOROMETHANE	5	ND	1,3,5-TRIMETHYLBENZENE	5	ND
CHLOROFORM	5	ND	4-CHLOROTOLUENE	5	ND
1,1,1-TRICHLOROETHANE	5	ND	TERT-BUTYLBENZENE	5	ND
CARBON TETRACHLORIDE	5	ND	1,2,4-TRIMETHYLBENZENE	5	ND
1,1-DICHLOROPROPENE	5	ND	sec-BUTYLBENZENE	5	ND
BENZENE	5	ND	1,3-DICHLOROBENZENE	5	ND
1,2-DICHLOROETHANE	5	ND	p-ISOPROPYLTOLUENE	5	ND
TRICHLOROETHENE	5	ND	1,4-DICHLOROBENZENE	5	ND
1,2-DICHLOROPROPANE	5	ND	n-BUTYLBENZENE	5	ND
DIBROMOMETHANE	5	ND	1,2-DICHLOROBENZENE	5	ND
BROMODICHLOROMETHANE	5	ND	1,2-DIBROMO-3-CHLOROPROPANE		ND
cis-1,3-DICHLOROPROPENE	5	ND	1,2,4-TRICHLOROBENZENE	5	ND
4-METHYL-2-PENTANONE	10	ND	HEXACHLOROBUTADIENE	5	ND
1,2,3-TRICHLOROBENZENE	5	ND	NAPHTHALENE	5	ND

QA/QC SURROGATE RECOVERIES

TOLUENE-d8(80-116) 98% BROMOFLUOROBENZENE(86-115) 102% 1,2-DICHLOROETHANE-D4(76-114) 98%

B = ANALYTE DETECTED IN METHOD BLANK, POSSIBLY BELOW THE REPORTING LIMIT.

ND = NOT DETECTED ABOVE REPORTING LIMIT

RL = REPORTING LIMIT; DEFINED AS THE PRACTICAL QUANTITATION LIMIT PLUS ANY DILUTION, POSITIVE VALUES BELOW THIS LIMIT WERE NOT REPORTED.

ATAS 875 Fee Fee Road • Maryland Heights, MO 63043 • (314) 434-4570 - FAX (314) 434-0080

CH2M HILL CLIENT:

REPORT: 3098601VO(738)

727 NORTH FIRST STREET, STE 400

ST. LOUIS, MO 63102

DATE: 10-19-00

R.L. RESULTS

ATTN: CHRIS ENGLISH

SAMPLE MATRIX: WATER

METHOD REF.: SW846-8260B, EPA METHODOLOGY

ATAS # : 30986.08A

PROJECT # : 161004.CA.01 - MODINE MFG.

DATE SUBMITTED: 10-05-00

SAMPLE ID : MW-5

DATE ANALYZED: 10-09-00

RESULTS REPORTED IN ug/L OR Parts Per Billion (PPB)

P T PECHT TO VOLATILES

VOLATILES	R.L.	RESULTS	VOLATILES	K.L.	RESULTS	
XYLENE (TOTAL)	5	ND	TOLUENE	5	ND	
DICHLORODIFLUOROMETHANE	10	ND	trans-1,3-DICHLOROPROPENE	5	ND	
CHLOROMETHANE	10	ND	1,1,2-TRICHLOROETHANE	5	ND	
VINYL CHLORIDE	10	ND	TETRACHLOROETHENE	5	ND	
BROMOMETHANE	10	ND	1,3-DICHLOROPROPANE	5	ND	
CHLOROETHANE	10	ND	2-HEXANONE	10	ND	
TRICHLOROFLUOROMETHANE	10	ND	DIBROMOCHLOROMETHANE	5	ND	
1,1-DICHLOROETHENE	5	ND	1,2-DIBROMOETHANE	5	ND	
ACETONE	10	ND	CHLOROBENZENE	5	ND	
IODOMETHANE	10	ND	1,1,1,2-TETRACHLOROETHANE	5	ND	
CARBON DISULFIDE	5	ND	ETHYLBENZENE	5	ND	
METHYLENE CHLORIDE	5	ND	STYRENE	5	ND	
trans-1,2-DICHLOROETHENE	5	ND	BROMOFORM	5	ND	
METHYL TERT-BUTYL ETHER	10	ND	ISOPROPYLBENZENE	5	ND	
1,1-DICHLOROETHANE	5	ND	1,1,2,2-TETRACHLOROETHANE	5	ND	
VINYL ACETATE	10	ND	BROMOBENZENE	5	ND	
2,2-DICHLOROPROPANE	5	ND	1,2,3-TRICHLOROPROPANE	5	ND	
cis-1,2-DICHLOROETHENE	5	14	n-PROPYLBENZENE	5	ND	
2-BUTANONE	10	ND	2-CHLOROTOLUENE	5	ND	
BROMOCHLOROMETHANE	5	ND	1,3,5-TRIMETHYLBENZENE	5	ND	
CHLOROFORM	5	ND	4-CHLOROTOLUENE	5	ND	
1,1,1-TRICHLOROETHANE	5	ND	TERT-BUTYLBENZENE	5	ND	
CARBON TETRACHLORIDE	5 .	ND	1,2,4-TRIMETHYLBENZENE	5	ND	
1,1-DICHLOROPROPENE	5	ND	sec-BUTYLBENZENE	5	ND	
BENZENE	5	ND	1,3-DICHLOROBENZENE	5	ND	
1,2-DICHLOROETHANE	5	ND	p-ISOPROPYLTOLUENE	5	ND	
TRICHLOROETHENE	10	290	1,4-DICHLOROBENZENE	5	ND	
1,2-DICHLOROPROPANE	5	ND	n-BUTYLBENZENE	5	ND	
DIBROMOMETHANE	5	ND	1,2-DICHLOROBENZENE	5	ND	
BROMODICHLOROMETHANE	5	ND	1,2-DIBROMO-3-CHLOROPROPANE	5	ND	
cis-1,3-DICHLOROPROPENE	5	ND	1,2,4-TRICHLOROBENZENE	5	ND	
4-METHYL-2-PENTANONE	10	ND	HEXACHLOROBUTADIENE	5	ND	
1,2,3-TRICHLOROBENZENE	5	ND	NAPHTHALENE	5	ND	

QA/QC SURROGATE RECOVERIES

TOLUENE-d8(80-116) 98% BROMOFLUOROBENZENE(86-115) 105% 1,2-DICHLOROETHANE-D4(76-114) 99%

B = ANALYTE DETECTED IN METHOD BLANK, POSSIBLY BELOW THE REPORTING LIMIT.

ND = NOT DETECTED ABOVE REPORTING LIMIT

RL = REPORTING LIMIT; DEFINED AS THE PRACTICAL QUANTITATION LIMIT PLUS ANY DILUTION, POSITIVE VALUES BELOW THIS LIMIT WERE NOT REPORTED.

1745 875 Fee Fee Road • Maryland Heights, MO 63043 • (314) 434-4570 - FAX (314) 434-0080

CH2M HILL CLIENT:

REPORT: 3098601VO(738)

727 NORTH FIRST STREET, STE 400

ST. LOUIS, MO 63102 ATTN: CHRIS ENGLISH

DATE: 10-19-00

SAMPLE MATRIX: WATER METHOD REF.: SW846-8260B, EPA METHODOLOGY ATAS # : 30986.09A PROJECT # : 161004.CA.01 - MODINE MFG.

DATE SUBMITTED: 10-05-00 SAMPLE ID : MW-4

DATE ANALYZED: 10-09-00

RESULTS REPORTED IN ug/L OR Parts Per Billion (PPB)

VOLATILES	R.L.	RESULTS	VOLATILES	R.L.	RESULTS
XYLENE (TOTAL)	5	ND	TOLUENE	5	ND
DICHLORODIFLUOROMETHANE	10	ND	trans-1,3-DICHLOROPROPENE	5	ND
CHLOROMETHANE	10	ND	1,1,2-TRICHLOROETHANE	5	ND
VINYL CHLORIDE	10	ND	TETRACHLOROETHENE	5	ND
BROMOMETHANE	10	ND	1,3-DICHLOROPROPANE	5	ND
CHLOROETHANE	10	ND	2-HEXANONE	10	ND
TRICHLOROFLUOROMETHANE	10	ND	DIBROMOCHLOROMETHANE	5	ND
1,1-DICHLOROETHENE	5	ND	1,2-DIBROMOETHANE	5	ND
ACETONE	10	ND	CHLOROBENZENE	5	ND
IODOMETHANE	10	ND	1,1,1,2-TETRACHLOROETHANE	5	ND
CARBON DISULFIDE	5	ND	ETHYLBENZENE	5	ND
METHYLENE CHLORIDE	5	ND	STYRENE	5	ND
trans-1,2-DICHLOROETHENE	5	ND	BROMOFORM	5	ND
METHYL TERT-BUTYL ETHER	10	ND	ISOPROPYLBENZENE	5	ND
1,1-DICHLOROETHANE	5	ND	1,1,2,2-TETRACHLOROETHANE	5	ND
VINYL ACETATE	10	ND	BROMOBENZENE	5	ND
2,2-DICHLOROPROPANE	5	ND	1,2,3-TRICHLOROPROPANE	5	ND
cis-1,2-DICHLOROETHENE	5	ND	n-PROPYLBENZENE	5	ND
2-BUTANONE	10	ND	2-CHLOROTOLUENE	5	ND
BROMOCHLOROMETHANE	5	ND	1,3,5-TRIMETHYLBENZENE	5	ND
CHLOROFORM	5	ND	4-CHLOROTOLUENE	5	ND
1,1,1-TRICHLOROETHANE	5	ND	TERT-BUTYLBENZENE	5	ND
CARBON TETRACHLORIDE	5	ND	1,2,4-TRIMETHYLBENZENE	5	ND
1.1-DICHLOROPROPENE	5	ND	sec-BUTYLBENZENE	5	ND
BENZENE	5	ND	1,3-DICHLOROBENZENE	5	ND
1,2-DICHLOROETHANE	5	ND	p-ISOPROPYLTOLUENE	5	ND
TRICHLOROETHENE	5	140	1,4-DICHLOROBENZENE	5	ND
1,2-DICHLOROPROPANE	5	ND	n-BUTYLBENZENE	5	ND
DIBROMOMETHANE	5	ND	1,2-DICHLOROBENZENE	5	ND
BROMODICHLOROMETHANE	5	ND	1,2-DIBROMO-3-CHLOROPROPANE	5	ND
cis-1,3-DICHLOROPROPENE	5	ND	1,2,4-TRICHLOROBENZENE	5	ND
4-METHYL-2-PENTANONE	10	ND	HEXACHLOROBUTADIENE	5	ND
1,2,3-TRICHLOROBENZENE	5	ND	NAPHTHALENE	5	ND
the state of the s					

QA/QC SURROGATE RECOVERIES

TOLUENE-d8(80-116) 98% BROMOFLUOROBENZENE(86-115) 105% 1,2-DICHLOROETHANE-D4(76-114) 99%

B = ANALYTE DETECTED IN METHOD BLANK, POSSIBLY BELOW THE REPORTING LIMIT.

ND = NOT DETECTED ABOVE REPORTING LIMIT

RL = REPORTING LIMIT; DEFINED AS THE PRACTICAL QUANTITATION LIMIT PLUS ANY DILUTION, POSITIVE VALUES BELOW THIS LIMIT WERE NOT REPORTED.

4745 875 Fee Fee Road • Maryland Heights, MO 63043 • (314) 434-4570 - FAX (314) 434-0080

CLIENT: CH2M HILL

REPORT: 3098601VO(738)

727 NORTH FIRST STREET, STE 400

ST. LOUIS, MO 63102 ATTN: CHRIS ENGLISH

SAMPLE MATRIX : WATER

METHOD REF.: SW846-8260B, EPA METHODOLOGY
PROJECT #: 161004.CA.01 - MODINE MFG.
SAMPLE ID: MW-4A

DATE: 10-19-00

SAMPLE MATRIX: WATER
ATAS # : 30986.10A

DATE SUBMITTED: 10-05-00

DATE ANALYZED: 10-09-00

RESULTS REPORTED IN ug/L OR Parts Per Billion (PPB)

VOLATILES	R.L.	RESULTS	VOLATILES	R.L.	RESULTS
XYLENE (TOTAL)	5	ND	TOLUENE	5	ND
DICHLORODIFLUOROMETHANE	10	ND	trans-1,3-DICHLOROPROPENE	5	ND
CHLOROMETHANE	10	ND	1,1,2-TRICHLOROETHANE	5	ND
VINYL CHLORIDE	10	ND	TETRACHLOROETHENE	5	ND
BROMOMETHANE	10	ND	1,3-DICHLOROPROPANE	5	ND
CHLOROETHANE	10	ND	2-HEXANONE	10	ND
TRICHLOROFLUOROMETHANE	10	ND	DIBROMOCHLOROMETHANE	5	ND
1,1-DICHLOROETHENE	5	ND	1,2-DIBROMOETHANE	5	ND
ACETONE	10	ND	CHLOROBENZENE	5	ND
IODOMETHANE	10	. ND	1,1,1,2-TETRACHLOROETHANE	5	ND
CARBON DISULFIDE	5	ND	ETHYLBENZENE	5	ND
METHYLENE CHLORIDE	5	ND	STYRENE	5	ND
trans-1,2-DICHLOROETHENE	5	ND	BROMOFORM	5	ND
METHYL TERT-BUTYL ETHER	10	ND	ISOPROPYLBENZENE (5	ND
1,1-DICHLOROETHANE	5	ND	1,1,2,2-TETRACHLOROETHANE	5	ND
VINYL ACETATE	10	ND	BROMOBENZENE	5	ND
2,2-DICHLOROPROPANE	5	ND	1,2,3-TRICHLOROPROPANE	5	ND
cis-1,2-DICHLOROETHENE	5	ND	n-PROPYLBENZENE	5	ND
2-BUTANONE	10	ND	2-CHLOROTOLUENE	5	ND
BROMOCHLOROMETHANE	5	ND	1,3,5-TRIMETHYLBENZENE	5	ND
CHLOROFORM	5	ND	4-CHLOROTOLUENE	5	ND
1,1,1-TRICHLOROETHANE	5	ND	TERT-BUTYLBENZENE	5	ND
CARBON TETRACHLORIDE	5	ND	1,2,4-TRIMETHYLBENZENE	5	ND
1,1-DICHLOROPROPENE	5	ND	sec-BUTYLBENZENE	5	ND
BENZENE	5	ND	1,3-DICHLOROBENZENE	5	ND
1,2-DICHLOROETHANE	5	ND	p-ISOPROPYLTOLUENE	5	ND
TRICHLOROETHENE	5	150	1,4-DICHLOROBENZENE	5	ND
1,2-DICHLOROPROPANE	5	ND	n-BUTYLBENZENE	5	ND
DIBROMOMETHANE	5	ND	1,2-DICHLOROBENZENE	5	ND
BROMODICHLOROMETHANE	5	ND	1,2-DIBROMO-3-CHLOROPROPANE		ND
cis-1,3-DICHLOROPROPENE	5	ND	1,2,4-TRICHLOROBENZENE	5	ND
4-METHYL-2-PENTANONE	10	ND	HEXACHLOROBUTADIENE	5	ND
1,2,3-TRICHLOROBENZENE	5	ND	NAPHTHALENE	5	ND

QA/QC SURROGATE RECOVERIES

TOLUENE-d8(80-116) 99% BROMOFLUOROBENZENE(86-115) 105% 1,2-DICHLOROETHANE-D4(76-114) 101%

B = ANALYTE DETECTED IN METHOD BLANK, POSSIBLY BELOW THE REPORTING LIMIT.

ND = NOT DETECTED ABOVE REPORTING LIMIT

RL = REPORTING LIMIT; DEFINED AS THE PRACTICAL QUANTITATION LIMIT PLUS ANY DILUTION, POSITIVE VALUES BELOW THIS LIMIT WERE NOT REPORTED.

**RESTANCE | 1.00 | 1.0

REPORT: 3098601VO(738)

DATE : 10-19-00

CH2M HILL CLIENT:

727 NORTH FIRST STREET, STE 400

ST. LOUIS, MO 63102

ATTN: CHRIS ENGLISH

SAMPLE MATRIX: WATER METHOD REF.: SW846-8260B, EPA METHODOLOGY ATAS # : 30986.11A PROJECT # : 161004.CA.01 - MODINE MFG.

DATE SUBMITTED: 10-05-00 SAMPLE ID : EB-1

DATE ANALYZED: 10-09-00

RESULTS REPORTED IN ug/L OR Parts Per Billion (PPB)

VOLATILES	R.L.	RESULTS	VOLATILES	R.L.	RESULTS
XYLENE (TOTAL)	5	ND	TOLUENE	5	ND
DICHLORODIFLUOROMETHANE	10	ND	trans-1,3-DICHLOROPROPENE	5	ND
CHLOROMETHANE	10	ND	1,1,2-TRICHLOROETHANE	5	ND
VINYL CHLORIDE	10	ND	TETRACHLOROETHENE	5	ND
BROMOMETHANE	10	ND	1,3-DICHLOROPROPANE	5	ND
CHLOROETHANE	10	ND	2-HEXANONE	10	ND
TRICHLOROFLUOROMETHANE	10	ND	DIBROMOCHLOROMETHANE	5	ND
1,1-DICHLOROETHENE	5	ND	1,2-DIBROMOETHANE	5	ND
ACETONE	10	ND	CHLOROBENZENE	5	ND
IODOMETHANE	10	ND	1,1,1,2-TETRACHLOROETHANE	5	ND
CARBON DISULFIDE	5	ND	ETHYLBENZENE	5	ND
METHYLENE CHLORIDE	5	ND	STYRENE ***	5	ND
trans-1,2-DICHLOROETHENE	5	ND	BROMOFORM	5	ND
METHYL TERT-BUTYL ETHER	10	ND	ISOPROPYLBENZENE	5	ND
1,1-DICHLOROETHANE	5	ND	1,1,2,2-TETRACHLOROETHANE	5	ND
VINYL ACETATE	10	ND	BROMOBENZENE	5	ND
2,2-DICHLOROPROPANE	5	ND	1,2,3-TRICHLOROPROPANE	5	ND
cis-1,2-DICHLOROETHENE	5	ND	n-PROPYLBENZENE	5	ND
2-BUTANONE	10	ND	2-CHLOROTOLUENE	5	ND
BROMOCHLOROMETHANE	5	ND	1,3,5-TRIMETHYLBENZENE	5	ND
CHLOROFORM	5	ND	4-CHLOROTOLUENE	5	ND
1,1,1-TRICHLOROETHANE	5	ND	TERT-BUTYLBENZENE	5	ND
CARBON TETRACHLORIDE	5	ND	1,2,4-TRIMETHYLBENZENE	5	ND
1,1-DICHLOROPROPENE	5	ND	sec-BUTYLBENZENE	5	ND
BENZENE	5	ND	1,3-DICHLOROBENZENE	5	ND
1,2-DICHLOROETHANE	5	ND	p-ISOPROPYLTOLUENE	5	ND
TRICHLOROETHENE	5	ND	1,4-DICHLOROBENZENE	5	ND
1,2-DICHLOROPROPANE	5	ND	n-BUTYLBENZENE	5	ND
DIBROMOMETHANE	5	ND	1,2-DICHLOROBENZENE	5	ND
BROMODICHLOROMETHANE	5	ND	1,2-DIBROMO-3-CHLOROPROPANE	5	ND
cis-1,3-DICHLOROPROPENE	5	ND	1,2,4-TRICHLOROBENZENE	5	ND
4-METHYL-2-PENTANONE	10	ND	HEXACHLOROBUTADIENE	5	ND
1,2,3-TRICHLOROBENZENE	5	ND	NAPHTHALENE	5	ND
iti s					

QA/QC SURROGATE RECOVERIES

TOLUENE-d8(80-116) 99% BROMOFLUOROBENZENE(86-115) 104% 1,2-DICHLOROETHANE-D4(76-114) 100%

B = ANALYTE DETECTED IN METHOD BLANK, POSSIBLY BELOW THE REPORTING LIMIT.

ND = NOT DETECTED ABOVE REPORTING LIMIT

RL = REPORTING LIMIT; DEFINED AS THE PRACTICAL QUANTITATION LIMIT PLUS ANY DILUTION, POSITIVE VALUES BELOW THIS LIMIT WERE NOT REPORTED.

REPORT: 3098601VO(738)

LABORATORY RESULTS

4745 875 Fee Fee Road • Maryland Heights, MO 63043 • (314) 434-4570 - FAX (314) 434-0080

CH2M HILL CLIENT:

727 NORTH FIRST STREET, STE 400

DATE : 10-19-00 ST. LOUIS, MO 63102

ATTN: CHRIS ENGLISH

METHOD REF.: SW846-8260B, EPA METHODOLOGY SAMPLE MATRIX : SOIL

: METHOD BLANK PROJECT # : 161004.CA.01 - MODINE MFG.

SAMPLE ID : METHOD BLANK DATE SUBMITTED: 10-05-00

DATE ANALYZED: 10-08-00

RESULTS REPORTED IN ug/Kg OR Parts Per Billion (PPB)

VOLATILES	R.L.	RESULTS	VOLATILES	R.L.	RESULTS
XYLENE (TOTAL)	5	ND	TOLUENE	5	ND
DICHLORODIFLUOROMETHANE	10	ND	trans-1,3-DICHLOROPROPENE	5	ND
CHLOROMETHANE	10	ND	1,1,2-TRICHLOROETHANE	5	ND
VINYL CHLORIDE	10	ND	TETRACHLOROETHENE	5	ND
BROMOMETHANE	10	ND	1,3-DICHLOROPROPANE	5	ND
CHLOROETHANE	10	ND	2-HEXANONE	10	ND
TRICHLOROFLUOROMETHANE	10	ND	DIBROMOCHLOROMETHANE	5	ND
1,1-DICHLOROETHENE	5	ND	1,2-DIBROMOETHANE	5	ND
ACETONE	10	ND	CHLOROBENZENE	5	ND
IODOMETHANE	10	ND	1,1,1,2-TETRACHLOROETHANE	5	ND
CARBON DISULFIDE	5	ND	ETHYLBENZENE	5	ND
METHYLENE CHLORIDE	5	11	STYRENE	5	ND
trans-1,2-DICHLOROETHENE	5	ND	BROMOFORM	5	ND
METHYL TERT-BUTYL ETHER	10	ND	ISOPROPYLBENZENE	5	ND
1,1-DICHLOROETHANE	5	ND	1,1,2,2-TETRACHLOROETHANE	5	ND
VINYL ACETATE	10	ND	BROMOBENZENE	5	ND
2,2-DICHLOROPROPANE	5	ND	1,2,3-TRICHLOROPROPANE	5	ND
cis-1,2-DICHLOROETHENE	5	ND	n-PROPYLBENZENE	5	ND
2-BUTANONE	10	ND	2-CHLOROTOLUENE	5	ND
BROMOCHLOROMETHANE	5	ND	1,3,5-TRIMETHYLBENZENE	5	ND
CHLOROFORM	5	ND	4-CHLOROTOLUENE	5	ND
1,1,1-TRICHLOROETHANE	5	ND	TERT-BUTYLBENZENE	5	ND
CARBON TETRACHLORIDE	5	ND	1,2,4-TRIMETHYLBENZENE	5	ND
1,1-DICHLOROPROPENE	5	ND	sec-BUTYLBENZENE	5	ND
BENZENE	5	ND	1,3-DICHLOROBENZENE	5	ND
1,2-DICHLOROETHANE	5	ND	p-ISOPROPYLTOLUENE	5	ND
TRICHLOROETHENE	5	ND	1,4-DICHLOROBENZENE	5	ND
1,2-DICHLOROPROPANE	5	ND	n-BUTYLBENZENE	5	ND
DIBROMOMETHANE	5	ND	1,2-DICHLOROBENZENE	5	ND
BROMODICHLOROMETHANE	5	ND	1,2-DIBROMO-3-CHLOROPROPANE	5	ND
cis-1,3-DICHLOROPROPENE	5	ND	1,2,4-TRICHLOROBENZENE	5	ND
4-METHYL-2-PENTANONE	10	ND	HEXACHLOROBUTADIENE	5	ND
1,2,3-TRICHLOROBENZENE	5	ND	NAPHTHALENE	5	ND

QA/QC SURROGATE RECOVERIES

TOLUENE-d8(81-117) 99% BROMOFLUOROBENZENE(74-121) 102% 1,2-DICHLOROETHANE-D4(70-121) 100%

ND = NOT DETECTED ABOVE REPORTING LIMIT

RL = REPORTING LIMIT; DEFINED AS THE PRACTICAL QUANTITATION LIMIT PLUS ANY DILUTION, POSITIVE VALUES BELOW THIS LIMIT WERE NOT REPORTED.

LABORATORY RESULTS

875 Fee Fee Road • Maryland Heights, MO 63043 • (314) 434-4570 - FAX (314) 434-0080

LABORATORY QUALITY CONTROL SEQUENCE

SAMPLE MATRIX: SOIL

REPORT DATE: 10-19-00

DATE ANALYZED: 10-08-00

METHOD REF. : SW846-8260B, EPA METHODOLOGY

LABORATORY CONTROL SAMPLE RECOVERY

COMPOUND	LCS % REC.
1,1-DICHLOROETHENE	92
TRICHLOROETHENE	100
BENZENE	102
TOLUENE	102
CHLOROBENZENE	96

** TABORATORI RESOLTS

875 Fee Fee Road • Maryland Heights, MO 63043 • (314) 434-4570 - FAX (314) 434-0080

LABORATORY QUALITY CONTROL SEQUENCE

SAMPLE MATRIX: SOIL

REPORT DATE: 10-19-00

DATE ANALYZED: 10-08-00 and 10-09-00

METHOD REF. : SW846-8260B, EPA METHODOLOGY

MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY

COMPOUND	30943.05 MS % REC.	30943.05 MSD % REC.	RPD	QC RPD	ADVISORY LIMITS
1,1-DICHLOROETHENE	73	76	4	28	43-151
TRICHLOROETHENE	73	75	3	7	45-137
BENZENE	78	81	4	12	57-143
TOLUENE	75	78	4	16	42-147
CHLOROBENZENE	65	66	2	7	58-133

REPORT: 3098601VO(738)

LABORATORY RESULTS

875 Fee Fee Road • Maryland Heights, MO 63043 • (314) 434-4570 - FAX (314) 434-0080

CH₂M HILL CLIENT:

727 NORTH FIRST STREET, STE 400

DATE : 10-19-00 ST. LOUIS, MO 63102

ATTN: CHRIS ENGLISH

SAMPLE MATRIX: WATER METHOD REF.: SW846-8260B, EPA METHODOLOGY
ATAS # : METHOD BLANK PROJECT # : 161004.CA.01 - MODINE MFG.
DATE SUBMITTED: 10-05-00 SAMPLE ID : METHOD BLANK

DATE ANALYZED: 10-09-00

RESULTS REPORTED IN ug/L OR Parts Per Billion (PPB)

VOLATILES	R.L.	RESULTS	VOLATILES	R.L.	RESULTS
XYLENE (TOTAL)	5	ND	TOLUENE	5	ND
DICHLORODIFLUOROMETHANE	10	ND	trans-1,3-DICHLOROPROPENE	, 5	ND
CHLOROMETHANE	10	ND	1,1,2-TRICHLOROETHANE	5	ND
VINYL CHLORIDE	10	ND	TETRACHLOROETHENE	5	ND
BROMOMETHANE	10	ND	1,3-DICHLOROPROPANE	5	ND
CHLOROETHANE	10	ND	2-HEXANONE	10	ND
TRICHLOROFLUOROMETHANE	10	ND	DIBROMOCHLOROMETHANE	5	ND
1,1-DICHLOROETHENE	5	ND	1,2-DIBROMOETHANE	5	ND
ACETONE	10	ND	CHLOROBENZENE	5	ND
IODOMETHANE	10	ND	1,1,1,2-TETRACHLOROETHANE	5	ND
CARBON DISULFIDE	5	ND	ETHYLBENZENE	5	ND
METHYLENE CHLORIDE	5	ND	STYRENE	5	ND
trans-1,2-DICHLOROETHENE	-5	ND	BROMOFORM	5	ND
METHYL TERT-BUTYL ETHER	10	ND	ISOPROPYLBENZENE	5	ND
1,1-DICHLOROETHANE	5	ND	1,1,2,2-TETRACHLOROETHANE	5	ND
VINYL ACETATE	10	ND	BROMOBENZENE	5	ND
2,2-DICHLOROPROPANE	5	ND	1,2,3-TRICHLOROPROPANE	5	ND
cis-1,2-DICHLOROETHENE	5	ND	n-PROPYLBENZENE	5	ND
2-BUTANONE	10	ND	2-CHLOROTOLUENE	5	ND
BROMOCHLOROMETHANE	5	ND	1,3,5-TRIMETHYLBENZENE	5	ND
CHLOROFORM	5	ND	4-CHLOROTOLUENE	5	ND
1,1,1-TRICHLOROETHANE	5	ND	TERT-BUTYLBENZENE	5	ND
CARBON TETRACHLORIDE	5	ND	1,2,4-TRIMETHYLBENZENE	5	ND
1,1-DICHLOROPROPENE	5	ND	sec-BUTYLBENZENE	5	ND
BENZENE	5	ND	1,3-DICHLOROBENZENE	5	ND
1,2-DICHLOROETHANE	5	ND	p-ISOPROPYLTOLUENE	5	ND
TRICHLOROETHENE	5	ND	1,4-DICHLOROBENZENE	5	ND
1,2-DICHLOROPROPANE	5	ND	n-BUTYLBENZENE	5	ND
DIBROMOMETHANE	5	ND	1,2-DICHLOROBENZENE	5	ND
BROMODICHLOROMETHANE	5	ND	1,2-DIBROMO-3-CHLOROPROPANE	5	ND
cis-1,3-DICHLOROPROPENE	5	ND	1,2,4-TRICHLOROBENZENE	5	ND
4-METHYL-2-PENTANONE	10	ND	HEXACHLOROBUTADIENE	5	ND
1,2,3-TRICHLOROBENZENE	5	ND	NAPHTHALENE	5	ND

QA/QC SURROGATE RECOVERIES

TOLUENE-d8(80-116) 100% BROMOFLUOROBENZENE(86-115) 102% 1,2-DICHLOROETHANE-D4(76-114) 103%

ND = NOT DETECTED ABOVE REPORTING LIMIT

RL = REPORTING LIMIT; DEFINED AS THE PRACTICAL QUANTITATION LIMIT PLUS ANY DILUTION, POSITIVE VALUES BELOW THIS LIMIT WERE NOT REPORTED.

LABORATORY RESULTS

875 Fee Fee Road • Maryland Heights, MO 63043 • (314) 434-4570 - FAX (314) 434-0080

LABORATORY QUALITY CONTROL SEQUENCE

SAMPLE MATRIX: WATER

DATE ANALYZED: 10-09-00

METHOD REF. : SW846-8260B, EPA METHODOLOGY

REPORT DATE: 10-19-00

LABORATORY CONTROL SAMPLE RECOVERY

COMPOUND	LCS % REC.
1,1-DICHLOROETHENE	88
TRICHLOROETHENE	100
BENZENE	100
TOLUENE	98
CHLOROBENZENE	92

LABORATORY RESULTS

875 Fee Fee Road • Maryland Heights, MO 63043 • (314) 434-4570 - FAX (314) 434-0080

LABORATORY QUALITY CONTROL SEQUENCE

SAMPLE MATRIX: WATER

REPORT DATE: 10-19-00

DATE ANALYZED: 10-09-00

METHOD REF. : SW846-8260B, EPA METHODOLOGY

MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY

COMPOUND	30986.05A MS % REC.	30986.05A MSD % REC.	RPD	QC RPD	ADVISORY LIMITS
1,1-DICHLOROETHENE	90	94	4	16	47-137
TRICHLOROETHENE	104	104	0	11	81-117
BENZENE	100	98	2	12	81-118
TOLUENE	100	100	О	10	75-128
CHLOROBENZENE	94	96	2	8	85-115

*** TAS *** 875 Fee Fee Road * Maryland Heights, MO 63043 * (314) 434-4570 - FAX (314) 434-0080

CH2M HILL CLIENT:

3098601MT(738) REPORT:

727 NORTH FIRST STREET, STE 400

DATE : 10-19-00

ST. LOUIS, MO 63102 ATTN: CHRIS ENGLISH

SAMPLE MATRIX : WATER

30986.05C ATAS # 10-05-00 DATE SUBMITTED:

#161004.CA.01 - MODINE MFG. PROJECT

SAMPLE ID : MW-1

PARAMETER	REPORTING LIMIT UNITS RES		RESULTS	DATE ANALYZED	METHOD REFERENCE
		DISSOL	VED METALS		
ARSENIC BARIUM CADMIUM CHROMIUM LEAD SILVER SELENIUM MERCURY	0.05 0.02 0.01 0.01 0.05 0.02 0.10 0.0002	mg/L mg/L mg/L mg/L mg/L mg/L	ND 0.058 ND ND ND ND ND	10-10-00 10-10-00 10-10-00 10-10-00 10-10-00 10-10-00 10-19-00	SW 6010B SW 6010B SW 6010B SW 6010B SW 6010B SW 6010B SW 6010B SW 7470A

** TAS *** 875 Fee Fee Road * Maryland Heights, MO 63043 * (314) 434-4570 - FAX (314) 434-0080

CH2M HILL CLIENT:

REPORT:

3098601MT(738)

727 NORTH FIRST STREET, STE 400

ST. LOUIS, MO 63102 ATTN: CHRIS ENGLISH

DATE : 10-19-00

SAMPLE MATRIX : WATER

ATAS #

30986.06C

DATE SUBMITTED:

10-05-00

PROJECT :

#161004.CA.01 - MODINE MFG.

SAMPLE ID

: MW-2

PARAMETER	REPORTING LIMIT	UNITS	RESUL TS	DATE ANALYZED	METHOD REFERENCE
		DISSOL	VED METALS		
ARSENIC BARIUM CADMIUM CHROMIUM LEAD SILVER SELENIUM MERCURY	0.05 0.02 0.01 0.01 0.05 0.02 0.10 0.0002	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	ND 0.092 ND ND ND ND ND ND ND ND ND	10-10-00 10-10-00 10-10-00 10-10-00 10-10-00 10-10-00 10-19-00	SW 6010B SW 6010B SW 6010B SW 6010B SW 6010B SW 6010B SW 6010B SW 7470A

875 Fee Fee Road • Maryland Heights, MO 63043 • (314) 434-4570 - FAX (314) 434-0080

CLIENT: CH2M HILL

3098601MT(738) REPORT:

727 NORTH FIRST STREET, STE 400

DATE : 10-19-00 ST. LOUIS, MO 63102

ATTN: CHRIS ENGLISH

SAMPLE MATRIX : WATER

30986.07C ATAS # : DATE SUBMITTED: 10-05-00

PROJECT : #161004.CA.01 - MODINE MFG.

: MW-3 SAMPLE ID

PARAMETER	REPORTING LIMIT	UNITS	RESULTS	DATE ANALYZED	METHOD REFERENCE		
		DISSOL	VED METALS				
ARSENIC	0.05	mg/L	ND	10-10-00	SW 6010B		
BARIUM	0.02	mg/L	0.064	10-10-00	SW 6010B		
CADMIUM	0.01	mg/L	ND	10-10-00	SW 6010B		
CHROMIUM	0.01	mg/L	ND	10-10-00	SW 6010B		
LEAD	0.05	mg/L	ND	10-10-00	SW 6010B		
SILVER	0.02	mg/L	ND	10-10-00	SW 6010B		
SELENIUM	0.10	mg/L	ND	10-10-00	SW 6010B		
MERCURY	0.0002	mg/L	ND	10-19-00	SW 7470A		

ND = NOT DETECTED ABOVE REPORTING LIMIT

4745 875 Fee Fee Road • Maryland Heights, MO 63043 • (314) 434-4570 - FAX (314) 434-0080

CLIENT: CH2M HILL

727 NORTH FIRST STREET, STE 400

ST. LOUIS, MO 63102 ATTN: CHRIS ENGLISH

DATE : 10-19-00

REPORT:

3098601MT(738)

SAMPLE MATRIX : WATER

ATAS #

30986.08C

DATE SUBMITTED: 10-05-00

PROJECT : #161004.CA.01 - MODINE MFG.

SAMPLE ID

: MW-5

PARAMETER	REPORTING LIMIT	UNITS	RESULTS	DATE ANALYZED	METHOD REFERENCE
		DISSOL	VED METALS		
ARSENIC BARIUM CADMIUM CHROMIUM LEAD SILVER SELENIUM MERCURY	0.05 0.02 0.01 0.01 0.05 0.02 0.10 0.0002	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	ND 0.048 ND ND ND ND ND ND ND ND	10-10-00 10-10-00 10-10-00 10-10-00 10-10-00 10-10-00 10-19-00	SW 6010B SW 6010B SW 6010B SW 6010B SW 6010B SW 6010B SW 7470A

*** 875 Fee Fee Road • Maryland Heights, MO 63043 • (314) 434-4570 - FAX (314) 434-0080

CH₂M HILL CLIENT:

3098601MT(738)

727 NORTH FIRST STREET, STE 400

REPORT:

DATE : 10-19-00

ST. LOUIS, MO 63102 ATTN: CHRIS ENGLISH

SAMPLE MATRIX : WATER

ATAS #

30986.09C

DATE SUBMITTED: 10-05-00

PROJECT : #161004.CA.01 - MODINE MFG.

SAMPLE ID

: MW-4

PARAMETER	REPORTING LIMIT	UNITS	RESULTS	DATE ANALYZED	METHOD REFERENCE		
		DISSOL	VED METALS				
ARSENIC BARIUM CADMIUM CHROMIUM LEAD SILVER SELENIUM MERCURY	0.05 0.02 0.01 0.01 0.05 0.02 0.10 0.0002	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	ND 0.071 ND ND ND ND ND	10-10-00 10-10-00 10-10-00 10-10-00 10-10-00 10-10-00 10-19-00	SW 6010B SW 6010B SW 6010B SW 6010B SW 6010B SW 6010B SW 6010B SW 7470A		

4745 875 Fee Fee Road • Maryland Heights, MO 63043 • (314) 434-4570 - FAX (314) 434-0080

CH2M HILL CLIENT:

REPORT:

DATE : 10-19-00

3098601MT(738)

727 NORTH FIRST STREET, STE 400

ST. LOUIS, MO 63102 ATTN: CHRIS ENGLISH

SAMPLE MATRIX: WATER

ATAS #

30986.10C

DATE SUBMITTED: 10-05-00

PROJECT : #161004.CA.01 - MODINE MFG.

SAMPLE ID

: MW-4A

PARAMETER	REPORTING LIMIT		RESULTS	DATE ANALYZED	METHOD REFERENCE	
		DISSOL	VED METALS			
ARSENIC BARIUM CADMIUM CHROMIUM LEAD SILVER SELENIUM MERCURY	0.05 0.02 0.01 0.01 0.05 0.02 0.10 0.0002	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	ND 0.070 ND ND ND ND ND	10-10-00 10-10-00 10-10-00 10-10-00 10-10-00 10-10-00 10-19-00	SW 6010B SW 6010B SW 6010B SW 6010B SW 6010B SW 6010B SW 6010B SW 7470A	

**A T A S ** 875 Fee Fee Road * Maryland Heights, MO 63043 * (314) 434-4570 - FAX (314) 434-0080

CLIENT:

REPORT: 3098601MT(738)

CH₂M HILL 727 NORTH FIRST STREET, STE 400

ST. LOUIS, MO 63102

DATE : 10-19-00

ATTN: CHRIS ENGLISH

SAMPLE MATRIX : WATER

ATAS #

30986.11C

DATE SUBMITTED:

10-05-00

PROJECT :

#161004.CA.01 - MODINE MFG.

SAMPLE ID

: EB-1

PARAMETER	REPORTING LIMIT UNITS RESULTS		RESULTS	DATE ANALYZED	METHOD REFERENCE
		DISSOL	VED METALS		
ARSENIC BARIUM CADMIUM CHROMIUM LEAD SILVER SELENIUM MERCURY	0.05 0.02 0.01 0.01 0.05 0.02 0.10 0.0002	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	ND ND ND ND ND ND ND	10-10-00 10-10-00 10-10-00 10-10-00 10-10-00 10-10-00 10-19-00	SW 6010B SW 6010B SW 6010B SW 6010B SW 6010B SW 6010B SW 7470A

1745 875 Fee Fee Road • Maryland Heights, MO 63043 • (314) 434-4570 - FAX (314) 434-0080

CLIENT:

CH₂M HILL 727 NORTH FIRST STREET, STE 400

ST. LOUIS, MO 63102

ATTN: CHRIS ENGLISH

REPORT:

3098601MT(738)

DATE : 10-19-00

QA/QC

DESCRIPTION		PARAMETER	RESULTS	
METHOD BLANK	10-10-00 10-10-00 10-10-00 10-10-00 10-10-00 10-10-00	ARSENIC BARIUM CADMIUM CHROMIUM LEAD SILVER SELENIUM	<0.05 <0.02 <0.01 <0.01 <0.05 <0.02 <0.10 <0.0002	mg/L mg/L mg/L mg/L mg/L mg/L
METHOD BLANK CONTROL SPIKE	10-19-00 10-10-00 10-10-00 10-10-00 10-10-00 10-10-00 10-10-00 10-19-00	MERCURY ARSENIC BARIUM CADMIUM CHROMIUM LEAD SILVER SELENIUM MERCURY	101 % 110 % 99 % 102 % 99 % 101 % 103 %	RECOVERY RECOVERY RECOVERY RECOVERY RECOVERY RECOVERY RECOVERY RECOVERY

COOLER RECEIPT / SAMPLE LOG-IN SHEET

COOLER RECEIPT / SAMPLE LOG-IN SHEET (115-ATT2.WB1) / SWL-GA-115 REV 5.0 / GA-115-CRLOGIN-F

LAB NAME: AMERICAN TECHNICAL & ANALYTICAL SERVICES, INC.

PAGE / OF /

RECEIVED BY (PRINT N	IAME):PAUL C. KI	EMPEN						DATE 10/05/00
RECEIVED BY (SIGNAT	URE):	17					TIME R	EC'D 13:35
LOGGED IN BY (SIGNAT	TURE):	anerles					LOG-IN	DATE 2000-10-05 15:01
PROJECT: MODINE MF0 EPISODE: 30986	G		Sample	Assigned		рН	ACID/ BASE	REMARKS: CONDITION
		Client Sample #	Fraction	LAB#	Cooler I.D.	Check	LOT#	OF SAMPLE
SAMPLE DELIVERY GR	OUP:30986		@	ļ		1	COLUMN TO THE	SHIPMENT, ETC.
Remarks 1. CUSTODY SEAL(S):	Present/Absent	BH-1A(11)		30986.01	2-114	N		GOOD/4.2C
1. 0001001 012 (2).	Intact/ Broken	BH-2A(11)		30986.02	2-114	N		GOOD/4.2C
2. CUSTODY SEALS NO	S.:	BH-3A(10)		30986.03	2-114	N		GOOD/4.2C
		BH-4A(6)		30986.04	2-114	N		GOOD/4.2C
		MW-1		30986.05	2-114	N		GOOD/4.2C
3. CHAIN-OF CUSTODY. Sealed In Plastic?	<u>Present/</u> Absent <u>Yes/</u> No	MW-2		30986.06	2-114	N		GOOD/4.2C
Taped To Lid?	Yes/ No	MW-3		30986.07	2-114	N		GOOD/4.2C
Properly Filled Out (Ink, Signed, ETC.)?	Yes/ No	MW-5		30986.08	2-114	N		GOOD/4.2C
4. AIRBILL	AirBII/ Sticker	MW-4		30986.09	2-114	N		GOOD/4.2C
	Present/Absent	MW-4A		30986.10	2-114	N		GOOD/4.2C
5. AIRBILL NO:		EB-1		30986.11	2-114	N		GOOD/4.2C
			-					
6. COOLER CONDITION								
Enough Ice? Type of Ice?	<u>Yes/</u> No Wet							
Type of Packing?	Bubble Wrap							
7. SAMPLE TAGS	Present/Absent							
8. SAMPLE CONDITION:								
Bottles Sealed In Separate Plastic Bags?	Leaking	·			En.			
Correct Containers Used For Tests Indicated?	d				7			
Correct Preservative?	<u>Yes/</u> No <u>Yes/</u> No				4			э
Sufficient Sample?	Yes/ No					\>		
Labels Complete (I.D., I Time, Signature, Preser)	п
VOA Samples Without E	<u></u>							
O. D Information on O.								
Does Information on Con Records, Labels, Tags A								
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	100,110					-	***************************************	
10. RAD SCREEN WITH	GIEGER					-		
COUNTER?	Yes/ No							
11. P.O. Called?	Yes/ No							
								_

^{*} Contact PO and attach record of resolution

[@] Sample Fractions: B=SV GC/MS, V= VOA GC/MS or GC, P=Pesticide, H=Herbicide, D=Dioxin, A=Air, I=Inorganics, C=Cyanide, M=Metals, R=Radiochemistry

[~] Note samples with bubbles under remarks section.

SEND RESULTS TO (Name & Company):

AMERICAN TECHNICAL & ANALYTICAL SERVICES, Inc. 875 Fee Fee Road • Maryland Heights, MO 63043 • Office (314) 434-4570 • Fax (314) 434-0080 CHAIN OF CUSTODY RECORD

PAGE___OF__1_

No. <u>13026</u>

ATAS Client Name	2 M				Jers	Type of	Analysis	 s /	235 0	metod				1 1	Lab Use
Project Name Modine M	. Pro	ject #	004,0	J. 0	Containers		/1	exhal	50% LOO	OR	/ /		ector's Inti	lals	Only Initials Bate
Form Completed By T.	5	reland	P.O. #		No. of		OC B		15601		//	col	ectol	Remarks	2 Location 2
Sample ID/Location	Sample Date	Sample Time	Sample Matrix	Grab	Comp										
BH-14(11)	10/3/00	0922	soil	V	2 encor	e X						T50			30986.01
BH-2A(11)	10/3/00	1031	Soil	1	11	X						TSU	- W. C W W W W W W		Oá
BH-34(10)	()	1105	jı	i/	II.	X						TSU			03
BH-4A (6)	h	1138	ļi.	~	11	X						150		· ·	07
MW-I	10/4/00	1553	water	~	2-vials I-poly		X	×				TSU			d
MW-2	11	1702	"	/	lı	8	4	X				TSU			07
MW-3	U	1140	'n	/	11		*	X				150			07
MW-5 MW-4	il	1618	ţı	/	1,		4	X				150			ON
MW-4	10/4/00	1003	ij	~	Li		X	X	-			T3i			d9
MW-4A	10/5/00	1.200	11	レ	11		X	X				150	***************************************		10
EB-1	11	1025	11	~	1'		X	X				TSC			1/1/
															•
Relinquished by:		· · · · · · · · · · · · · · · · · · ·	Receiv	ed by:		-	Reli	nquished	l by:		Receiv	ed by:		Samples received una	nnounced with
Signatule	ん	Signature	nt c	Ho	mpan	Signati	ure			Signature				less than 48 hours hol ASAP request may be additional surcharges	subject to
Printed Name URS ENGLE	54	Printed N	lame _	KE	mpen	Printed	l Name			Printed N	ame			Turnaround RequirementsASAP5 working days	Preservatives A-Cold B-HNO₃
Firm CH2M HIL	(Firm	TAS			Firm				Firm				10 working days 15 working days	C-H₂SO₄ D-NaOH
Date/Time 10/5/00/1735		Date/Tim	5/00	13	:35	Date/T	ime			Date/Time)			4.2°C Temperature	E-HCI F

Original to ATAS / Conv to Client